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Preface

This design guide is based on the 2005 AISC Specification for Structural Steel Buildings. It provides guid-
ance in the application of the provisions of the Specification to the design of web-tapered members and 
frames composed of web-tapered members. The recommendations of this document apply equally to the 
2010 AISC Specification for Structural Steel Buildings, although some section and equation numbers have 
changed in the 2010 Specification.
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This document provides suggested methods for the design of 
web-tapered I-shaped beams and columns, as well as frames 
that incorporate web-tapered I-shaped beams and/or columns. 
Both the requirements for analysis and rules for proportion-
ing of web-tapered framing members are addressed. The 
emphasis is on members and frames with proportions and 
bracing details commonly used in metal building systems. 
However, this information is equally applicable to similar 
tapered members used in conventional steel construction.

The methods contained herein are primarily interpreta-
tions of, and extensions to, the provisions of the 2005 AISC 
Specification for Structural Steel Buildings (AISC, 2005), 
hereafter referred to as the AISC Specification. The recom-
mendations of this document apply equally to the 2010 AISC 
Specification for Structural Steel Buildings, although some 
section and equation numbers have changed in the 2010 
AISC Specification. These recommendations are not intend-
ed to apply to structures designed using earlier editions of 
the AISC Specification.

The 2005 AISC Specification is a significant departure 
from past AISC Specifications, particularly the ASD Speci-
fications, with which almost all metal buildings have been 
designed in the United States. Engineers and other users fa-
miliar with the previous ASD editions will find significant 
changes in the presentation of the AISC Specification, the 
member design provisions, and the requirements for analy-
sis. The AISC Specification contains no provisions specific 
to tapered members.

The methods presented in this document comply with the 
2005 AISC Specification and provide additional information 
needed to apply the Specification to tapered members. In 
some instances, procedures are provided for situations not 
addressed by the AISC Specification. These are noted where 
they occur.

The publication of the recommendations in this document 
is not intended to preclude the use of other methods that 
comply with the AISC Specification.

 1.1 BASIS FOR RECOMMENDATIONS

The following sources were used extensively in the prepa-
ration of this document, are referenced extensively herein, 
and should be used in conjunction with this publication for a 
fuller understanding of its recommendations:

1. ANSI/AISC 360-05, Specification for Structural Steel 
Buildings (AISC, 2005) and its commentary

2. “A Prototype Application of the AISC (2005) Stability 

Analysis and Design Provisions to Metal Building 
Structural Systems” (White and Kim, 2006)

The References and Annotated Bibliography sections of this 
document provide references to other publications relevant 
to the design of tapered members and frames composed 
of tapered members. Additional requirements for seis-
mic design and detailing can be found in the ANSI/AISC 
341-05, Seismic Provisions for Structural Steel Buildings 
(AISC, 2005a).

A significant research program was conducted as part of 
the development of this Design Guide. This research was 
conducted by White, Kim and others at the Georgia Institute 
of Technology. The focus of this work was the verification 
and adaptation of the AISC Specification provisions for ta-
pered members and frames composed of tapered members. 
The researched topics included studies on the following:

1. Beam lateral-torsional buckling (LTB)

2. Column in-plane and out-of-plane fl exural buckling

3. Column torsional and fl exural-torsional buckling

4. Infl uence of local buckling on member resistances

5. Combined infl uence of local buckling and member 
yielding on overall structure stiffness and strength

6. Synthesis of approaches for calculation of second-
order forces and moments in general framing systems

7. Benchmarking of second-order elastic analysis soft-
ware

8. Consideration of rotational restraint at nominally sim-
ply supported column bases

9. Consideration of general end restraint effects on the 
LTB resistance of web-tapered members

The reader is referred to Kim and White (2006a, 2006b, 
2007a, 2007b); Kim (2010); Ozgur et al. (2007); and Guney 
and White (2007) for a detailed presentation of research re-
sults for these topics.

 1.2 LIMITATIONS
Except where otherwise noted in the text, these recom-
mendations apply to members satisfying the following 
limits:

1. Specifi ed minimum yield strength, Fy ≤ 55 ksi.

2. Homogeneous members only (hybrid members are not 

 Chapter 1
Introduction
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considered); i.e., F Fyf yw= , where Fyf and Fyw are the 
fl ange and web minimum specifi ed yield strengths.

3. Web taper is linear or piecewise linear.

4. Web taper angle is between 0° and 15°.

5. Thickness of each fl ange is greater than or equal to the 
web thickness.

6.  Flange slenderness ratio is such that

   

b

t

f

f2
18≤

 where

  bf  = fl ange width, in.

  tf  = fl ange thickness, in.

7. Flange width is such that

   
b

h
f ≥

7

 throughout each unbraced length, Lb. Exception: if 
L r E Fb t y≤ 1 1.

   
b

h
f ≥

9

 throughout the unbraced length. In the foregoing 
equations,

  h = web height, in.

  rt =  radius of gyration of the fl ange in fl exural 
compression plus one third of the web area in 
compression due to the application of major 
axis bending moment alone, calculated using 
the largest section depth within the length un-
der consideration, in.

8. Web slenderness (without transverse stiffeners or with 
stiffeners at a/h >1.5) is such that

   

h

t

E

Fw y

≤ ≤0 40
260

.

 where

  E = modulus of elasticity, ksi

  tw = web thickness, in.

9. Web slenderness (with transverse stiffeners at a/h ≤1.5)
is such that

   

h

t

E

Fw y

≤ 12

It is expected that these recommendations can be extended 
to homogeneous members with larger yield strengths. How-
ever, the background research for these recommendations 

was focused on Fy = 55 ksi, because the use of larger yield 
strengths is not common in current practice.

In addition, it is expected that the recommendations can 
be extended to hybrid members. The background research 
for the recommendations in this Design Guide was focused 
on homogeneous members and the AISC Specification does 
not address hybrid members. Comprehensive provisions 
for flexural design of hybrid members are provided in the 
American Association of State Highway and Transportation 
Officials (AASHTO) LRFD Bridge Design Specifications 
(AASHTO, 2004, 2007).

Furthermore, it is expected that the recommendations can 
be applied to members with parabolic or other tapered web 
geometries. However, calculation of the elastic buckling re-
sistances of these types of members is beyond the scope of 
this document. The general approach provided in this docu-
ment also accommodates members with steps in the cross-
section geometry at field splices or transitions in cross-
section plate dimensions. However, the primary focus of 
this document is on members with linear or piecewise linear 
web taper.

 1.3 BENEFITS OF WEB-TAPERED MEMBERS

Web-tapered members have been utilized extensively in 
buildings and bridges for more than 50 years.

Design Optimization—Web-tapered members can be 
shaped to provide maximum strength and stiffness with min-
imum weight. Web depths are made larger in areas with high 
moments, and thicker webs are used in areas of high shear. 
Areas with less required moment and shear strength can 
be made shallower and with thinner webs, respectively, sav-
ing significant amounts of material when compared with 
rolled shapes.

Fabrication Flexibility—Fabricators equipped to produce 
web-tapered members can create a wide range of optimized 
members from a minimal stock of different plates and coil. 
This can result in time and cost savings compared with the 
alternative of ordering or stocking an array of rolled shapes. 
In many cases, the savings in material can offset the in-
creased labor involved in fabricating web-tapered members.

 1.4 FABRICATION OF 
WEB-TAPERED MEMBERS

Web-tapered I-shaped members are fabricated by welding 
the inside and outside flange plates to a tapered web plate. 
In the metal building industry, this welding is generally 
performed by automated welding machines. One typical 
process is as follows:

1. Flanges and webs are cut to size or selected from plate, 
coil, or bar stock, and spliced as required to length.

2. Flanges and webs are punched as required for attach-
ments (bracing, purlin and girt bolts, etc.).

001-004_DG25_Ch1.indd   2 6/21/11   1:46 PM
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well as any localized concentrated loads between the webs 
and flanges, where V is the required shear strength, Q is the 
static moment of area of the flange taken about the neutral 
axis, and I is the moment of inertia of the full cross section. 
In most cases, the calculated strength requirements can be 
met easily with one-sided welds. In special cases, such as 
for IMF and SMF seismic applications, additional strength is 
provided where required by reinforcing the automated weld 
with additional manual welding on one or both sides of the 
web-to-flange junction.

The one-sided automated welds used in tapered member 
production in the metal building industry have a long history 
of satisfactory performance. Two-sided welds are not re-
quired unless the calculated required weld strength exceeds 
the strength of a one-sided weld. Research by Chen et al. 
(2001) shows that one-sided welds are acceptable to transfer 
shear loads.

 1.5 GENERAL NOTES ON DOCUMENT

(1) Unless otherwise noted, references to a section or chap-
ter are references to the sections and chapters of this 
Design Guide.

(2) Extensive references to prior research and development 
efforts are provided in the Annotated Bibliography 
(Chapter 7). The Annotated Bibliography is organized 
chronologically under several topic areas. References 
cited within the other chapters of this Design Guide may 
be found in the Annotated Bibliography but are also in-
cluded in the main reference list for the convenience of 
the reader.

3. Flanges are tack-welded to the web, with the web in a 
horizontal position.

4. With the web in the horizontal position, both fl anges 
are simultaneously welded to the webs from the top 
side only, using an automated process that proceeds 
along the length of the member from one end to the 
other. Exception: welding on both sides of the web at 
member ends may be required for intermediate mo-
ment frames (IMF) and special moment frames (SMF) 
used in seismic applications.

5. End plates and stiffeners, if required, are manually 
welded to complete the member.

Although the thicknesses of the two flanges at any given cross 
section generally need not be the same, the constraints of 
most automated welding equipment require that the flanges 
be of the same width along the full length of a fabricated 
member. Consequently, web-tapered members in metal 
building construction usually have the same flange widths 
on the inside and outside of the members. Other welding 
systems, such as vertical pull-through welders and horizon-
tal welders with blocking, permit the automated welding 
of cross sections with different flange widths but are not as 
common. The production of members with unequal flange 
widths therefore is usually avoided. I-shaped members with 
unequal flange sizes (thickness and/or width) are categorized 
as singly symmetric in the AISC Specification.

The automated equipment used by metal building manu-
facturers to join the flanges with the web is typically capable 
of welding from one side only. These flange-to-web welds 
must be capable of transferring the local shear flow (VQ/I) as 
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 Chapter 2
Web-Tapered Member Behavior and 
Design Approaches
The behavior of web-tapered members is not qualitatively 
different from that of prismatic members. Tapered members 
are subject to the same limit states as prismatic members, 
but adjustments in the calculation of the strengths are re-
quired for some limit states due to the continuously varying 
geometry.

Strength limit states involving “local” member behavior 
do not differ from those of prismatic members. These in-
clude the limit states of:

1. Tension yielding

2. Compression yielding

3. Tension rupture

4. Shear yielding

5. Shear rupture

6. Local buckling

7. Shear buckling of unstiffened web panels

Local member strengths for these limit states can be calcu-
lated by directly applying the provisions of the AISC Speci-
fication using the section properties at the point of interest 
on the member.

The calculation of strengths involving the overall member 
behavior requires adjustments to the procedures given in the 
AISC Specification. These include the limit states of:

1. In-plane buckling (strong-axis flexural column buck-
ling)

2. Out-of-plane buckling (weak-axis flexural, torsional 
or flexural-torsional column buckling, as well as 
lateral-torsional beam buckling)

3. Strength under combined axial load and bending, 
where in-plane or out-of plane buckling is a control-
ling limit state

4. Shear buckling strength or shear tension-fi eld strength 
of stiffened web panels

Strength calculations in the AISC Specification for these 
limit states are based on the assumption of constant section 
properties over the member unsupported lengths. When 
designing web-tapered members, adjustments to the proce-
dures are needed to account for the varying section proper-
ties along the unsupported lengths. These adjustments are 
detailed in Chapters 4 and 5 of this Design Guide.

 2.1 PREVIOUS RESEARCH

Research on stability of members of varying cross sections 
can be traced back to the work of Euler (Ostwald, 1910), 
who derived the differential equation of the deflection curve 
and discussed columns of various shapes, including a trun-
cated cone or pyramid. Lagrange (1770–1773) discussed 
the stability of bars bounded by a surface of revolution of 
the second degree. Timoshenko (1936) summarized vari-
ous analytical and energy method solutions for the elastic 
buckling of nonprismatic columns, and cited related work 
as early as Bairstow and Stedman (1914) and Dinnik (1914, 
1916, 1929, 1932). He also discussed a powerful procedure 
called the method of successive approximations, which 
makes it possible to estimate buckling loads along with up-
per and lower bounds for any variation of the geometry and/
or axial loading along a member length. Timoshenko dem-
onstrated a graphical application of the method of successive 
approximations to a simply supported column with a stepped 
cross section subjected to a constant axial load.

Bleich (1952) provided analytical solutions for the elastic 
buckling of simply supported columns with linear and para-
bolically varying depths between their “chords.” Further-
more, he provided an overview of the method of successive 
approximations in his Sections 27 and 28 (Bleich, 1952, pp. 
81–91), including a proof of its convergence. In addition, 
Bleich provided detailed discussions of numerical solution 
procedures utilized with the method of successive approxi-
mations for column flexural buckling and thin-walled open 
section beam lateral-torsional buckling problems. These de-
velopments were based largely on the research by Newmark 
(1943) as well as by Salvadori (1951).

Timoshenko and Gere (1961) retained the solutions pre-
sented in Timoshenko’s earlier work (Timoshenko, 1936) 
and added a numerical solution for Timoshenko’s original 
stepped column demonstration of the method of successive 
approximations (see Timoshenko, 1936, pp. 116–125). Ti-
moshenko and Gere attributed the specific numerical imple-
mentation details they presented to Newmark (1943), and 
referenced Newmark for more extensive discussions and ad-
ditional applications. More recent discussions of the method 
of successive approximations are provided by Chen and 
Lui (1987) in their Section 6.7, and by Bazant and Cedo-
lin (1991) in their Section 5.8. Timoshenko and Gere (1961) 
also discussed the calculation of inelastic strengths of bars 
with variable cross section using column curves based on the 
tangent modulus, Et, at the cross section with the maximum 
compressive stress.
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In 1966, the Column Research Council (CRC) and the 
Welding Research Council (WRC) initiated the first concert-
ed effort to address the complete strength behavior of metal 
building frames composed of tapered I-shaped members. 
Prior experimental studies by Butler and Anderson (1963) 
and Butler (1966) had addressed the elastic stability behav-
ior of I-shaped beams tapered in both the flanges and webs, 
and tested as cantilevered beam-columns. Starting in 1966, 
researchers at the State University of New York at Buffalo 
worked on numerous aspects of the problem. This research 
concluded with the development of the provisions in AISC 
(1978), as well as a synthesis of these provisions, plus ad-
ditional design procedures and recommendations by Lee et 
al. (1981).

The first set of experimental tests aimed at understand-
ing the inelastic stability behavior of tapered I-shaped beam-
columns was conducted under the technical guidance of the 
CRC-WRC joint task committee, and was documented by 
Prawel et al. (1974). These tests and other analytical stud-
ies provided the basis for an overall design approach sum-
marized by Lee et al. (1972). These developments targeted 
members with linearly tapered web depths. A key charac-
teristic of the resulting design calculations was the use of 
member length modification factors. The modification fac-
tors mapped the physical linearly tapered member to an 
equivalent prismatic member composed of the cross section 
at its shallower end. The modified length for the equivalent 
prismatic member was selected such that this hypothetical 
member would buckle elastically at the same applied load 
as the physical linearly tapered member. Length modifica-
tion factors were developed by curve fitting to representa-
tive results from members with five different cross sections. 
For in-plane flexural buckling under constant axial load, 
the modification factor was denoted by the symbol, g. For 
out-of-plane lateral-torsional buckling (LTB) under approxi-
mately constant compression flange stress, two length modi-
fication factors were developed that paralleled the idealiza-
tions used in the AISC Specification two-equation approach. 
One modification factor, hs, was based on considering only 
the St. Venant torsional stiffness, while the other, hw, was 
based on considering only the warping torsion stiffness.

The equivalent column length, gL, only addressed the in-
plane flexural buckling of columns with simply supported 
end conditions. Therefore, a second length modification fac-
tor was applied to this length to account for the rotational 
restraint provided at the column ends by adjacent members. 
Idealized rectangular frame models similar to those em-
ployed in the development of the AISC alignment charts 
were used to derive design charts for the corresponding ef-
fective length factors, Kγ. Both of the ideal rectangular frame 
alignment chart cases—sidesway inhibited and sidesway 
uninhibited—were addressed. The total equivalent prismatic 
column length was therefore taken as the product of g and 

Kγ with the resulting physical tapered member length, KγgL. 
Actually, the g parameter was absorbed into the charts pro-
vided for determination of Kγ, but the two factors are shown 
separately here to emphasize the concepts.

Once the equivalent prismatic column length, KγgL, was 
determined, the AISC ASD equations were used to determine 
the column elastic or inelastic design strengths (LRFD). It is 
important to note that all the preceding steps were simply 
a means of estimating the maximum axial stress along the 
length of the column at incipient elastic buckling. This was 
followed by the mapping of this elastic buckling stress to the 
elastic or inelastic design stress. This last step used the same 
mapping of the theoretical to the design buckling resistance 
employed for prismatic members.

The preceding calculations only addressed the in-plane 
flexural buckling column resistance of linearly tapered web 
I-shaped members. The out-of-plane flexural buckling resis-
tance was addressed in exactly the same way as for prismatic 
members, because the weak-axis moment of inertia, Iy, is 
nearly constant along the length for members with prismatic 
flanges.

The calculation of the LTB strength involved the combi-
nation of the square root of the sum of the squares of the 
two elastic LTB contributions (one corresponding to the St. 
Venant torsional resistance and one corresponding to the 
warping torsional resistance) to determine an estimate of the 
theoretical total elastic LTB stress under uniform bending 
and simply supported end conditions. This stress was then 
multiplied by an additional parameter, labeled B in AISC 
(1978), which increased the calculated elastic buckling 
stress accounting for an estimate of end restraint from adja-
cent unbraced segments and/or the effects of a flexural stress 
gradient along the tapered member length. The B parameter 
equations were developed by Lee et al. (1972), Morrell and 
Lee (1974), and Lee and Morrell (1975). The base elastic 
LTB stress modified by B was taken as the estimated maxi-
mum flexural stress at incipient elastic LTB of the tapered 
member. Similar to the column strength determination, this 
elastic stress was used with the AISC ASD prismatic mem-
ber mapping from the theoretical elastic buckling resistance 
to the design LTB resistance (LRFD).

Lee et al. (1972) recommended interaction equations for 
checking of linearly tapered web I-shaped members for com-
bined axial and flexural loadings that paralleled the AISC 
ASD beam-column strength interaction equations for pris-
matic I-shaped members. The only change in the interaction 
equations implemented in AISC (1978) was a simplification 
in the Cm parameter, referred to as C′m in the AISC tapered 
member provisions. Lee et al. (1972) developed a relatively 
general Cm equation to approximate the second-order elastic 
amplification of the maximum major-axis bending stress in 
linearly tapered members at load levels corresponding to the 
nominal first-yield condition. The general equation accounts 
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for the influence of linear web taper and a linear variation of 
the bending moment between the member ends. The AISC 
(1978) C′m equations are identical to the general Cm equa-
tion but correspond to the specific cases of single-curvature 
bending with equal maximum flexural stress at both ends of 
the member and single-curvature bending with zero moment 
(or flexural stress) at the smaller end.

The preceding procedures formed the primary basis for 
the AISC design provisions in Appendix D of the ASD Spec-
ification for Design, Fabrication and Erection of Structural 
Steel for Buildings (AISC, 1978), Appendix F, Section F4 
of the Load and Resistance Factor Design Specification for 
Structural Steel Buildings (AISC, 1986), Appendix F, Sec-
tion F7 of the Specification for Structural Steel Buildings—
Allowable Stress and Plastic Design (AISC, 1989), and 
Appendix F, Section F3 of the Load and Resistance Factor 
Design Specification for Structural Steel Buildings (AISC, 
1993, 1999).

These approaches did not account for torsional or flexural-
torsional buckling limit states in tapered columns and beam-
columns. The flexural-torsional buckling limit state can be 
of particular importance for tapered members with unequal 
flange areas. Lee and Hsu (1981) addressed this design re-
quirement by providing an alternative beam-column strength 
interaction equation that estimated the flexural-torsional 
buckling resistance of tapered members subjected to com-
bined bending and axial compression, and charts that pro-
vided a coefficient required in the alternative beam-column 
strength interaction equation. These charts were included in 
Lee et al. (1981) but were never formally adopted within any 
of the AISC Specification provisions.

Furthermore, these approaches did not address the in-
plane stability design of I-shaped members consisting of two 
or more linearly tapered segments. These types of members 
are used commonly for roof girders or rafters in metal build-
ing frames. Lee et al. (1979) developed another extensive 
set of design charts that permitted the calculation of (1) the 
equivalent pinned-end prismatic column length for doubly 
symmetric, doubly tapered I-shaped members (analogous 
to the length gL), and (2) the effective equivalent prismatic 
column length accounting for the influence of end rotational 
end restraints for these members (analogous to the length 
KγgL). The second of these calculations was based again on 
idealized rectangular frame models similar to those associ-
ated with the AISC alignment charts. The authors provided 
charts and procedures for calculation of the equivalent rota-
tional stiffness provided by adjacent tapered members again 
using the concept of the equivalent length of an alternative 
prismatic member composed of the shallowest cross-section 
along the tapered member length. These charts were in-
cluded in Lee et al. (1981) but were never formally adopted 
within any of the AISC Specification provisions.

The provisions within the AISC Specifications from AISC 
(1978) through AISC (1999) were limited only to I-shaped 
members with equal-size flanges and linearly varying web 
depths. This, combined with the unpopularity of design 
charts without underlying equations for calculation of the 
corresponding parameters, led to limited use of these provi-
sions. Instead, metal building manufacturers have tended to 
develop their own specific mappings of the AISC prismatic 
member equations for design of the wide range of general 
nonprismatic member geometries encountered in practice, 
often based upon research to validate their design approaches. 
As a result, the AISC Committee on Specifications decided to 
remove the explicit consideration of nonprismatic I-shaped 
members entirely from the AISC Specification in favor of 
subsequent development of separate updated guidelines for 
these member types. It was anticipated that the subsequent 
developments could take significant advantage of the many 
advances that have been implemented for member and frame 
stability design in the time since the seminal work by Lee et 
al. (1981).

Since the culmination of the work by Lee et al. (1981), 
numerous other studies have been conducted to investigate 
various attributes of the behavior of nonprismatic I-shaped 
members and frames composed of these member types. Salt-
er et al. (1980); Shiomi et al. (1983); and Shiomi and Kurata 
(1984) have reported on additional experimental tests of iso-
lated doubly symmetric beam-columns with linearly tapered 
webs. However, these tests focused only on members with 
compact webs and flanges.

Practical web-tapered members produced by American 
manufacturers often have noncompact or slender webs and 
flanges. Forest and Murray (1982) tested eight full-scale 
clear-span gable frames with proportions representative of 
American design practices under the sponsorship of Star 
Building Systems. They provided an early assessment of the 
Star Building Systems design rules in place at that time, as 
well as the procedures recommended by Lee et al. (1981). 
Forest and Murray concluded, “No consistent set of design 
rules adequately predicted the frame strengths for all the 
loading combinations.” However, the Star Building Systems 
design rules were judged to be safe.

Jenner et al. (1985a, 1985b) tested four clear-span frames. 
These tests demonstrated the importance of providing suf-
ficient panel zone thickness to maintain the stiffness of 
the knee joint area. Davis (1996) conducted comparisons 
of AISC load and resistance factor design (LRFD) (AISC, 
1993) calculation procedures to the results from two other 
full-scale, clear-span gable frame tests conducted at Virginia 
Tech. Local buckling of the rafter flanges governed the de-
sign resistances as well as the experimental failure modes. 
The predictions of the experimental resistances were consis-
tently conservative by a small margin.
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Watwood (1985) discussed the calculation of the appropri-
ate effective length of the rafters in an example gable frame, 
accounting for the rafter axial compression and its effect 
on the sidesway stability of the overall structure. Watwood 
also investigated the sensitivity of his example frame design 
to foundation boundary conditions and unbalanced gravity 
loads. He suggested an approach for design of the rafters 
that in essence equates the buckling load of these members 
to their axial force at incipient sidesway buckling of the full 
structure. This typically results in an effective length factor 
for the rafters significantly larger than one. Numerous other 
researchers have considered the influence of axial compres-
sion in the rafters of gable clear-span frames in the calcula-
tion of the overall sidesway buckling loads and in the design 
of the gable frame columns, [e.g., Lu (1965), Davies (1990), 
Silvestre and Camotim (2002), and White and Kim (2006)]. 

These results highlight an anomaly of the effective length 
method (ELM) for structural stability design. Members that 
have small axial stress at incipient buckling of the frame 
generally have large effective length factors (K). In some 
cases, these K factors are justified, while in other cases they 
are not. If the member is indeed participating in the govern-
ing buckling mode, a large K value is justified. If the mem-
ber is largely undergoing rigid-body motion in the governing 
buckling mode, or if it has a relatively light axial load and 
is predominantly serving to restrain the buckling of other 
members, a large K value is sometimes not justified. The 
distinction between these two situations requires engineer-
ing judgment (White and Kim, 2006). In any case, the ELM 
procedures recommended by Lee et al. (1981) rely on the 
first-order elastic stiffness of the adjacent members in de-
termining the Kγ values. Unfortunately, if the adjacent mem-
bers are also subjected to significant axial compression, their 
effective stiffnesses can be reduced substantially. In these 
cases, the Lee et al. (1981) Kγ procedures in essence rely 
on one member to restrain the buckling of its neighbor, then 
turn around and rely on the neighbor to restrain the buckling 
of the member. Watwood (1985) shows a clear example il-
lustrating the fallacy of this approach.

Cary and Murray (1997) developed a significant im-
provement upon the traditional calculation of alignment 
chart frame effective length factors for sway frames. Their 
approach built upon Lui’s (1992) development of a story-
stiffness-based method for prismatic member frameworks. 
A common useful attribute of story-stiffness-based methods 
is that they use the results of a first-order elastic drift analy-
sis (usually conducted for service design lateral loadings) to 
quantify the overall story buckling resistance. In addition, 
one of the most significant attributes of these methods is the 
fact that they account for the influence of leaning (gravity-
only) columns on the frame sidesway buckling resistance. 
Conversely, the traditional AISC alignment chart and the 
Lee et al. (1981) effective length factor methods do not 

account for such influences. This attribute can be a very im-
portant factor in the proper stability design of wide modular 
frames having multiple bays and a large number of leaning 
columns. Cary and Murray (1997) did not address the poten-
tial significant degradation in the story buckling resistance 
due to axial compression in the beams or rafters of metal 
building structures. This axial compression is often negli-
gible for modular building frames, but it can be quite sig-
nificant in some clear-span gable frames, such as the frame 
considered by Watwood (1985). Also, these investigators 
did not account for the influence of different height col-
umns. This characteristic generally needs to be addressed in 
modular building frames as well as in monoslope roof clear-
span frames. White and Kim (2006) explain how the story-
stiffness equations from the Commentary on the AISC Spec-
ification (AISC, 2005a) can be extended to account both for 
the influence of axial compression in the roof girders as well 
as variable column heights. EuroCode3 (CEN, 2005) pro-
vides guidance on when these approximations are appropri-
ate for gable frames, although the origins and basis for the 
EuroCode3 guidelines are unknown.

White and Kim (2006) explain that all of the preced-
ing sidesway buckling analysis developments focus on the 
wrong parts of the stability design problem, because the be-
havior of metal building frames is almost always a moment 
amplification (load-deflection) problem rather than a side-
sway buckling (bifurcation) problem. The behavior of metal 
building frames is typically dominated by the moment terms. 
Therefore, calculation of the appropriate amplified moment 
from a load-deflection analysis of the structure is key, not 
the determination of a buckling load that is typically many 
times larger than the ultimate strength of the structure. The 
Direct Analysis Method in the AISC Specification allows the 
engineer to focus more appropriately on the most important 
part of the metal building frame design problem, i.e., the 
calculation of the amplified internal moments (or bending 
stresses) under relatively small axial loads (or axial stresses), 
and the corresponding proportioning of the structural system 
to resist these actions.

Metal building frame members are usually proportioned 
such that they encounter some yielding prior to reaching 
their maximum resistance. Subsequent to Lee et al. (1981), 
a number of other research studies have focused on evalu-
ation of inelastic beam and beam-column resistances and 
frame design. Jimenez (1998, 2005, 2006) and Jimenez 
and Galambos (2001) conducted numerous inelastic stabil-
ity studies of linearly tapered I-shaped members account-
ing for a nominal initial out-of-straightness, the nominal 
Lehigh (Galambos and Ketter, 1959) residual stress pattern 
commonly used in the literature for rolled wide-flange mem-
bers, and assuming compact cross-section behavior (i.e., no 
consideration of web or flange plate slenderness effects). 
Jimenez showed that the AISC (1999) provisions predicted 
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the column inelastic buckling resistance with some minor 
conservatism for these types of members. Also, he observed 
that the inelastic LTB curve for these types of members, pre-
dicted from inelastic buckling analyses, exhibited more of a 
pinched or concave up shape [rather than the linear transition 
curve assumed for the inelastic LTB range in AISC (1999)]. 
In addition, he observed that very short unbraced lengths 
were necessary for the compact I-shaped members consid-
ered in his study to reach their plastic moment capacity. Nev-
ertheless, it is important to note that this type of behavior 
has been observed as well in some inelastic buckling studies 
of prismatic I-shaped members. White and Jung (2008) and 
White and Kim (2008) show that the linear transition curve 
for inelastic LTB in AISC (2005) is a reasonable fit to the 
mean resistances from experimental test data for all types 
of prismatic I-shaped members and justify the AISC (2005) 
resistance factor ϕb = 0.90.

Other researchers have suggested simpler and more intui-
tive ways of determining the elastic buckling resistance of I-
shaped members than the equivalent prismatic member (with 
a modified length) approach. Polyzois and Raftoyiannis 
(1998) reexamined the B factor equations from AISC (1978, 
1986, 1989, 1993 and 1999) and suggested changes that 
covered a wider range of geometry and loading cases. They 
questioned the use of the single modification factor, B, to 
account for both the stress gradient effects and the influence 
of LTB end restraint from adjacent segments, and they devel-
oped separate modification factors for each of these contri-
butions to the elastic LTB resistance. In other developments, 
Yura and Helwig (1996) suggested a method of determining 
the elastic LTB resistance of linearly tapered I-shaped mem-
bers based on (1) the use of the AISC (2005) Cb equations 
but written in terms of the compression flange stresses rather 
than the member moments, and (2) the use of the tapered 
member cross section at the middle of the segment unbraced 
length. Kim and White (2007a) have validated the Yura and 
Helwig (1996) approach and have generalized this approach 
to other elastic member buckling calculations.

Numerous researchers have worked on refined calcula-
tions of elastic LTB resistances for tapered I-shaped members 
in recent years. Andrade et al. (2005) and Boissonnade and 
Maquoi (2005) show that the use of prismatic beam elements 
for the analysis of tapered beams (i.e., subdivision of the 
member into a number of small prismatic element lengths) 
can lead to significant errors when the behavior involves tor-
sion. Kim and White (2007a) use a three-dimensional beam 
finite element formulation similar to the formulations by An-
drade et al. (2005) and Boissonnade and Maquoi (2005) for 
their elastic buckling studies. More recently, Andrade et al. 
(2007) provide further validations of their one-dimensional 
beam model for capturing elastic LTB of web-tapered canti-
levers and simply-supported beams.

Kim (2010) demonstrates that the procedures presented in 
this design guide for calculating the LTB resistances may be 
applied equivalently to both tapered and prismatic I-section 
members. That is, given the calculation of an elastic buck-
ling resistance and the moment gradient parameter, Cb, the 
physical flexural strength is effectively the same at the most 
highly stressed section regardless of whether the member 
is tapered or prismatic. Kim (2010) also addresses the fact 
that virtual test simulation studies by refined full-nonlinear 
finite element analysis typically lead to smaller nominal 
strength estimates than obtained by analysis of experimen-
tal test data. These differences appear to be largely due to 
the geometric imperfections and internal residual stresses 
being smaller on average in the physical tests compared to 
common deterministic values assumed in viritual simulation 
studies. The nominal flexural strengths calculated using the 
AISC Specification and this Design Guide essentially give 
the mean of the resistances from experimental tests (White 
and Jung, 2008; White and Kim, 2008; Kim, 2010)

Davies and Brown (1996), King (2001a, 2001b), and Sil-
vestre and Camotim (2002) have presented substantial in-
formation about the overall design of gable frame systems, 
including clear-span frames and multiple-span gable frames 
with moment continuity throughout and lightweight inte-
rior columns. Much of their discussions are oriented toward 
European practices and design standards, including plastic 
analysis and design of single-story gable frames using com-
pact rolled I-shaped members with haunches at the frame 
knees. However, these studies also provide useful insights 
that are of value to American practices, which typically in-
volve welded I-shapes with thinner web and flange plates.

There are numerous other prior efforts that deserve men-
tion, but due to the abbreviated scope of this section are not 
referenced herein. See Chapter 7 for an extensive annotated 
bibliography on the stability design of frames composed of 
tapered and general nonprismatic I-shaped members.

 2.2 RELATIONSHIP TO PRIOR AISC 
PROVISIONS FOR WEB-TAPERED MEMBERS

The member resistance provisions provided in this Design 
Guide differ somewhat from the Appendix F provisions of 
AISC (1989). Nevertheless, the fundamental concepts are 
largely the same. The primary differences between the cur-
rent provisions and those in AISC (1989) are as follows:

1. The prior AISC (1989) provisions required the flanges 
to be of equal and constant area. The recommended 
provisions apply generally to cases such as singly 
symmetric members and unbraced segments having 
cross-section transitions.

2. The prior AISC (1989) provisions required the depth 
to vary linearly between the ends of the unbraced 
lengths. The recommended provisions apply to all 
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cases within the scope of this document, including 
unbraced lengths having cross-section transitions and/or 
multiple tapered segments.

3. The recommended resistance provisions define a map-
ping of the beam and column resistances from a theo-
retical elastic buckling value to an elastic or inelastic 
resistance using the AISC (2005) beam and column 
resistance equations as a base. The Appendix F provi-
sions of AISC (1989) define a similar mapping to the 
design resistances, but use the AISC (1989) beam and 
column equations. The AISC (2005) design resistance 
equations provide improved simplicity and accuracy 
for the base prismatic member cases compared to the 
AISC (1989) equations (White and Chang, 2007).

4. The prior AISC (1989) column resistance equations 
for tapered members were based on the calculation 
of an equivalent elastic effective length factor, Kγg. 
The effective length, KγgL, was the length at which an 
equivalent prismatic member composed of the small-
est cross section would buckle elastically at the same 
constant axial load as in the actual tapered column of 
length L. As noted in Section 2.1, the separate g pa-
rameter, which gives the equivalent length for simply 
supported end conditions, was actually absorbed into 
charts for determination of the rotational end restraint 
effects. Therefore, AISC (1989) shows just one fac-
tor, labeled as Kγ [i.e., Kγ in AISC (1989) is the same 
as Kγg in this discussion]. The length KγgL was used 
in the AISC (1989) equations to accomplish the pre-
ceding mapping from the theoretical elastic buckling 
stress to the column buckling resistance, expressed in 
terms of the allowable axial stress. The AISC (1989) 
column buckling resistance corresponded specifi cally 
to the axial stress state at the smallest cross section.

 The recommended provisions focus directly on the 
calculation of the controlling elastic buckling load (or 
stress) ratio,

 γe
e

r

e

r

P

P

F

f
= =  (2.2-1)

 where 

 Fe =  corresponding axial stress at the most highly 
stressed cross section (the smallest cross section 
if the axial force is constant along the member 
length), ksi

 Pe =  smallest member axial force at flexural buckling 
about the major- or minor-axis of bending, tor-
sional buckling, or flexural-torsional buckling, 
kips

 Pr =  member required axial load resistance, kips

 fr =  Pr /Ag at the most highly stressed cross section, 
ksi 

 Ag =  gross area of member, in.2

 The calculation of γe, which is the same for all cross 
sections along the member length (because it is an 
overall member buckling load ratio), is more easily 
generalized to address all potential column buckling 
limit states for all types of member geometries than 
the equivalent length procedures of AISC (1989). 
Also, it accommodates all three of the overall stabil-
ity analysis-and-design approaches in AISC (2005), 
i.e., the Direct Analysis Method, the Effective Length 
Method and the First-Order Analysis Method. Simpli-
fied procedures are provided in this design guide for 
calculation of γe. Furthermore, the ratio γe = Pe /Pr = 
Fe /fr can be obtained directly from general buckling 
analysis methods. Nevertheless, both the prior calcu-
lation of KγgL and the current calculation of γe focus 
on the same fundamental question: what is the elastic 
buckling load (or stress) for the unsupported length 
under consideration?

5. The prior AISC (1989) flexural resistance equations 
also focused on a modification of the tapered mem-
ber length, L. The basic concept was to replace the 
tapered beam by an “equivalent” prismatic beam with 
a different length, and with a cross section identical 
to the one at the smaller end of the tapered beam. The 
equivalency condition was that both the actual tapered 
member and the equivalent prismatic member buckle 
elastically at the same flexural stress if the compres-
sion flange is subjected to uniform flexural compres-
sion. This led to two different length modifiers, labeled 
hs and hw, which were used with the ASD two-equation 
lateral-torsional buckling (LTB) resistance equations 
depending on whether the LTB resistance was domi-
nated by the St. Venant torsion stiffness or the warp-
ing torsion stiffness. Rather than taking the elastic 
buckling stress as the larger of these two estimates, 
Fsγ and Fwγ, as in the AISC (1989) prismatic member 
provisions, AISC (1989) Appendix F used the more 
refined estimate of (Fsγ

2 + Fwγ
2)0.5 to determine the 

base elastic LTB stress. A separate modifier, labeled 
B, was applied to this elastic buckling estimate to ac-
count for moment gradient effects and lateral restraint 
offered by adjacent unbraced segments. Finally, for 
B(Fsγ

2 + Fwγ
2)0.5 > Fy /3, the AISC (1989) flexural re-

sistance equations mapped the above elastic buckling 
stress estimate, B(Fsγ

2 + Fwγ
2)0.5, to an inelastic LTB 

design resistance using the prismatic member equa-
tions [for B(Fsγ

2 + Fwγ
2)0.5 ≤ Fy /3, the design LTB re-

sistance was taken the same as the theoretical elastic 
LTB resistance]. The maximum flexural stress within 
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the unbraced segment was then compared against this 
design LTB resistance.

 In contrast, the recommended LTB resistance provi-
sions focus on the calculation of (1) the buckling load 
ratio (γe.LTB)Cb =1 = (Me.LTB)Cb =1 /Mr and the moment gradi-
ent modifier, Cb, or more generally the buckling load 
ratio, γe.LTB = Me.LTB /Mr, including the moment gradient 
effects for the unbraced length under consideration, 
where Me.LTB is the elastic lateral-torsional buckling 
strength and Mr is the required flexural strength (ASD 
or LRFD), and (2) the calculated flexural stress state, 
fr /Fy, at key locations along the length. Simplified 
procedures are provided for the calculation of Cb and 
(γe.LTB)Cb =1 for linearly tapered members. The param-
eters Cb, (γe.LTB)Cb =1 and fr /Fy are then used with a form 
of the base AISC (2005) flexural resistance equations 
to accomplish a general mapping from the theoretical 
elastic LTB resistance to the elastic or inelastic design 
LTB resistance.

6. Both the prior AISC (1989) provisions as well as the 
recommended provisions address compression flange 
local buckling (FLB) on a cross section by cross 
section basis using the base prismatic member equa-
tions. The AISC (2005) FLB equations, on which the 
recommended provisions are based, give a simpler and 
more accurate characterization of the FLB resistance 
of I-shaped members (White and Chang, 2007) than 
the prior AISC (1989) provisions.

7. The AISC (1989) provisions restrict both the tension 
and the compression flange to the same allowable 
LTB stress. The recommended provisions specify a 
more rational tension flange yielding (TFY) limit for 
singly symmetric I-shaped members with a smaller 
tension flange and a larger depth of the web in flexural 
tension.

8. The AISC (1989) Appendix F provisions applied the 
base ASD prismatic beam-column strength interaction 
equations to assess the resistance of members sub-
jected to combined flexure and axial force. A modi-
fied factor, labeled C′m, was defined for two specific 
cases: (1) single curvature bending and approximately 
equal computed bending stresses at the ends; and (2) 
computed bending stress at the smaller end equal to 
zero. The recommended provisions utilize the base 
AISC (2005) prismatic beam-column strength interac-
tion equations. These equations are applied to define 
the strength interaction for all types of beam-column 
geometries and all combinations of column and beam 
resistance limit states.

9. The prior AISC (1989) Appendix F provisions re-
quired extensive use of charts for the calculation of 
the in-plane column buckling resistances (i.e., for the 
determination of Kγg). The current provisions do not 
require the use of any charts.

The prior AISC LRFD provisions (AISC, 1999) for web-
tapered members were patterned largely after AISC ASD 
provisions (AISC, 1989). The flexural resistance provisions 
were essentially identical to the latter. The column resistance 
provisions utilized the same Kγg as in the AISC ASD provi-
sions (AISC, 1989) but applied these parameters with the 
AISC LRFD column curve [which is retained as the AISC 
(2005) column curve]. Furthermore, the beam-column resis-
tance was checked using the AISC LRFD (AISC, 1999) bi-
linear interaction curve, but with the C′m from the AISC ASD 
provisions (AISC, 1989). The AISC LRFD (AISC, 1999) 
bilinear equations are retained as the base beam-column 
strength curve in AISC (2005).

The recommended provisions represent a natural pro-
gression in terms of simplification, improvement in accu-
racy, and improvement in breadth of applicability from the 
AISC ASD (AISC, 1989) and the AISC LRFD (AISC, 1999) 
provisions.
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 Chapter 3
Design Basis

The primary basis for the following design recommenda-
tions is the AISC Specification. In cases where supplemental 
recommendations are given to account for the unique nature 
of web-tapered members, these procedures conform to the 
intent of the AISC Specification. Users are cautioned against 
selecting individual provisions and incorporating them 
into their current design methods based on earlier AISC 
Specifications.

Structures may be designed using the AISC Specification 
using either allowable strength design (ASD) or load and re-
sistance factor design (LRFD). The Specification voices no 
preference, so the choice can be made by the designer on the 
basis of personal preference. Designs produced by ASD and 
LRFD may differ slightly, but both are acceptable according 
to the AISC Specification and the building codes that refer-
ence the AISC Specification.

The LRFD procedure is intended to provide a mathemati-
cally predictable level of reliability, i.e., a known probability 
that the strength of the structure will exceed the demands 
imposed upon it over its lifetime. The safety factors used 
in ASD have been derived from LRFD to provide a similar 
level of safety and reliability.

 3.1 KEY TERMINOLOGY

The five following terms are used throughout the AISC 
Specification and this document:

1. Required strength is the member (or component) force 
or moment that must be resisted. This usually comes 
from a structural analysis. The required strength for 
any given load combination is calculated using the 
appropriate ASD or LRFD load combinations. In this 
document, required strength is represented by the fol-
lowing symbols:

 Rr =  Generalized required strength, which applies to 
both ASD and LRFD. Rr is a generic term that 
can refer to forces or moments. The specifi c re-
quired forces and moments are designated by:

  Pr =  required axial strength using LRFD or 
ASD load combinations, kips

  Vr =  required shear strength using LRFD or 
ASD load combinations, kips

  Mr =  required fl exural strength using LRFD or 
ASD load combinations, kip-in.

 Ra =  ASD required strength calculated using ASD 
load combinations. Ra is a generic term that can 
refer to forces or moments. The specifi c required 
ASD forces and moments are designated by:

  Pa =  required axial strength using ASD load 
combinations, kips

  Va =  required shear strength using ASD load 
combinations, kips

  Ma =  required fl exural strength using ASD load 
combinations, kip-in.

 Ru =  LRFD required strength calculated using LRFD 
load combinations. Ru is a generic term that can 
refer to forces or moments. The specifi c required 
LRFD forces and moments are designated by:

  Pu =  required axial strength using LRFD load 
combinations, kips

  Vu  =  required shear strength using LRFD load 
combinations, kips

  Mu =  required fl exural strength using LRFD 
load combinations, kip-in.

2. Nominal strength is the calculated strength without 
reduction by safety factors (ASD) or resistance factors 
(LRFD). Nominal strength is represented by the fol-
lowing symbols:

 Rn =  Generalized nominal strength. Specifi c nominal 
axial forces, shear forces and moments are des-
ignated by:

  Pn =  nominal axial strength, kips

  Vn =  nominal shear strength, kips

  Mn =  nominal fl exural strength, kip-in.

3. Available strength is the generalized term for cal-
culated strength including reductions by safety fac-
tors (ASD) or resistance factors (LRFD). Available 
strength refers inclusively to both allowable strength 
and design strength.

 Pc =  available axial strength (allowable strength in 
ASD or design strength in LRFD), kips
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 Mc =  available fl exural strength (allowable strength in 
ASD or design strength in LRFD), kip-in.

4. Allowable strength is the nominal strength divided by 
the safety factor (ASD), 

  Allowable strength = 
Rn

Ω
5. Design strength is the nominal strength multiplied by 

the resistance factor (LRFD),

  Design strength = φRn

 3.2 LIMIT STATES DESIGN

Although the AISC Specification permits design by either 
the ASD or LRFD methods, all designs produced using the 
provisions of the AISC Specification are limit states based. 
In both ASD and LRFD, required strengths are compared 
against available strengths calculated for each of the limit 
states by which the member can be governed.

The roots of the AISC Specification are primarily the 
provisions from the 1999 LRFD Specification, enhanced 
with numerous changes based on more recent research and 
aspects of ASD that were preferable or better for practice. 
Safety factors have been provided for use in ASD. The safety 
factors are calibrated to give essentially identical results to 
LRFD for each limit state when the ratio of live load to dead 
load is 3.0. 

When the live load to dead load ratio is higher than 3.0, 
ASD will tend to produce a somewhat lighter design. When 
the live load to dead load ratio is less than 3.0, LRFD will 
tend to produce a lighter design. The differences between 
designs produced using the two methods are rather small, 
even when the ratio of live-to-dead load becomes extreme. 
A similar result occurs for other load combinations. For 
structures with large second-order effects, the ASD second-
order analysis requirements (i.e., the second-order effects 
must be considered at an ultimate strength load level taken 
as 1.6 times the load combinations in ASD) tend to reduce 
or eliminate the apparent economic advantage ASD has for 
structures with high live load to dead load ratios. 

Although the 1.6 factor used to increase ASD loads to 
ultimate levels is usually more conservative than the load 
factors used for LRFD, this value is lower than that used in 
previous editions of the ASD Specifications. In the 1989 and 
earlier editions, second-order amplification was handled by 
the term [see AISC (1989) Equation H1-1],

 

C
f

F

m

a

e

1−
′

 where

  Fe′ =  Euler stress for a prismatic member divided 
by a safety factor, ksi

  fa =  computed axial stress, ksi

The safety factor of 23/12 = 1.92 in the term F ′e  effectively 
resulted in second-order amplification occurring at 1.92 
times the ASD load levels.

Other than the load combinations, the safety and resis-
tance factors, and a few details of second-order analysis, 
there are no significant differences between the ASD and 
LRFD design procedures in the AISC Specification.

 3.2.1 LRFD Design Basis

The design basis for LRFD is formally expressed as: 

 R Ru n≤ φ  (3.2-1, Spec. Eq. B3-1)

where

Ru =  required strength computed using LRFD load com-
binations, kips

Rn =  nominal strength of the applicable limit state, kips

ϕ =  LRFD resistance factor corresponding to the limit 
state

Stated simply, the required strength, Ru, must be less than or 
equal to the design strength, ϕRn.

 3.2.2 ASD Design Basis

There is an important difference between ASD as defined 
in the AISC Specification and ASD as has been customarily 
practiced in the United States. In prior ASD Specifications, 
ASD was an acronym for allowable stress design. In past 
editions, the Specification provided maximum allowable 
stresses that were compared with calculated working load 
stresses in the member. In the AISC Specification, ASD is 
an acronym for allowable strength design. The Specifica-
tion now provides maximum allowable forces and moments 
that are compared with required forces and moments in the 
member. This is the same format that has been used in the 
Specification for Cold-Formed Structural Steel Members 
(AISI, 1996, 2001, 2007) since 1996. 

The design basis for ASD is formally expressed as:

 R
R

a
n≤

Ω
 (3.2-2, Spec. Eq. B3-2)
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where

Ra =  required strength computed using ASD load combi-
nations, kips

Rn =  nominal strength of the applicable limit state, kips

Ω =  ASD safety factor corresponding to the limit state

Stated simply, the required strength, Ra, must be less than or 
equal to the allowable strength, Rn /Ω.

 3.2.3 Allowable Stress Design

Although the AISC Specification provides ASD strengths in 
terms of forces and moments, it is possible to convert these 
strengths to a stress-based format for the convenience of 
users accustomed to working with stresses. Stress-based de-
sign holds several advantages over load-based design. These 
include the ability of the engineer to more readily assess the 
reasonableness of the allowable strengths, in most cases, 
and the potential for greater compatibility with the existing 
ASD software base. This technique has been presented in an 
article by Fisher (2005) and in literature distributed by AISC 
on the AISC website at www.aisc.org and at seminars. Al-
though this procedure is not explicitly endorsed in the AISC 
Specification, it produces mathematically identical results to 
load-based ASD designs produced in accordance with the 
Specification when properly used.

Required strengths are converted to required stresses by 
dividing the required strength by the appropriate section 
property [gross area (A), section modulus (S), area of web, 
etc.] in the usual way. Allowable strengths are converted to 
allowable stresses by dividing the allowable strength by the 
same section property used to calculate the corresponding 
required stress. Thus, the design basis becomes:

 Required stress ≤ Allowable stress (3.2-3)

 For axial compression force, 
P

A

P

A
a n

c

≤
Ω

 (3.2-4)

 For fl exure, 
M

S

M

S
a n

b

≤
Ω

 (3.2-5)

Allowable flexural stresses computed in this manner can ex-
ceed 0.66Fy in cases where the nominal flexural strength ap-
proaches the plastic moment. This is particularly the case for 
highly singly symmetric sections, which can have a shape 
factor, Mp /My, significantly larger than 1.1, where Mp is the 
plastic bending moment and My is the yield moment.

The design calculations are mathematically equivalent to 
those produced by the allowable strength design procedure 
if the details of these conversions are handled consistently. 
This stress-based procedure should not be used to produce 
predicted strengths in excess of those calculated using forces 
and moments.
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 Chapter 4
Stability Design Requirements

The most significant and possibly the most challenging 
changes in the AISC Specification are in the area of stabil-
ity design, that is, the analysis of framing systems and the 
application of rules for proportioning of the frame compo-
nents accounting for stability effects. With a few exceptions, 
designers using the 1989 AISC Specification for Structural 
Steel Buildings—Allowable Stress and Plastic Design (AISC, 
1989) have conducted linearly elastic structural analysis 
without any explicit consideration of second-order effects, 
geometric imperfections, residual stresses, or other nonideal 
conditions. Changes in the AISC Specification make explicit 
consideration of some, or all, of these factors mandatory in 
the analysis phase.

 4.1 KEY TERMINOLOGY

The following key terms are used in the AISC Specification 
and this document.

P-Δ effect. Additional force or moment (couple) due to ax-
ial force acting through the relative transverse displacement 
of the member (or member segment) ends (see Figure 4-1).

P-δ effect. Additional bending moment due to axial force 
acting through the transverse displacement of the cross-
section centroid relative to a chord between the member (or 
member segment) ends (see Figure 4-2). In singly symmet-
ric web-tapered I-shaped members, and in members with 
steps in the cross-section geometry along their length, this 
transverse displacement includes both the deflections rela-
tive to the chord between the member or element ends, due 
to applied loads, as well as the offset of the (nonstraight) 

cross-section centroidal axis from the chord. When mem-
bers are subdivided into shorter-length elements in a second-
order matrix analysis, the P-δ effects at the member level are 
captured partly by P-Δ effects at the individual member or 
segment level (see Figure 4-3).

Second-order analysis. Structural analysis in which the 
equilibrium conditions are formulated on the deformed 
structure. Second-order effects (both P-δ and P-Δ, unless 
specified otherwise) are included. First-order elastic analysis 
with appropriate usage of amplification factors is a second-
order analysis. Other methods of second-order elastic analy-
sis include matrix formulations based on the deformed ge-
ometry and P-Δ analysis procedures applied with a sufficient 
number of elements per member. See Chapter 6, Section 6.2, 
for a brief summary and assessment of different methods of 
second-order analysis. See Chapter 6, Section 6.2.1, for a 
discussion of the required number of elements per member 
for various types of second-order matrix analysis.

Second-order effect. Effect of loads acting on the de-
formed configuration of a structure; includes P-δ effect and 
P-Δ effect.

 4.2 ASCE 7 AND IBC SEISMIC 
STABILITY REQUIREMENTS

Requirements for consideration of second-order effects 
under some conditions were introduced into the seismic 
provisions of the American Society of Civil Engineers’ 
standard, ASCE 7, beginning in 1998 (ASCE, 1998) and the 
International Building Code (IBC) beginning in 2000 (IBC, 

Fig. 4-1. Illustration of P-Δ effect.
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Fig. 4-2. Illustration of combined P-δ and P-Δ effects on sidesway moments and displacements.

P
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Δ

Fig. 4-3. Capture of member P-δ effects by subdivision into shorter-length elements.

2000). These provisions established limits on the maximum 
P-Δ effects and imposed second-order analysis requirements 
in some cases. The current provisions, summarized from 
ASCE/SEI 7-05 (ASCE, 2005), are as follows:

Section 12.8.7 requires the calculation of a seismic stability 
coefficient, θ, for each seismic load combination:

 θ =
P

V h C
x

x sx d

Δ
 (4.2-1, ASCE/SEI 7 12.8-16)

where
Px = gravity load in the combination (with a maxi-

mum load factor of 1.0), kipsΔ
V Cx d  

= elastic sidesway fl exibility of the structure 
under a lateral load, Vx, calculated using the 
nominal elastic (unreduced) structural stiffness, 
in./kip

hsx = story height at the level being considered, in.
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Here, θ is an estimate of the ratio of the gravity load to 
the elastic sidesway buckling strength of the frame and is 
an indicator of the magnitude of the expected P-Δ effects. 
Structures with θ less than or equal to 0.10 have small P-Δ 
effects and are exempt from any ASCE 7 second-order 
analysis requirement. Structures with θ between 0.10 and an 
upper limit that can range as high as 0.25 are permitted, but 
must be designed using an analysis that includes P-Δ effects. 
Structures with θ above the upper limit of 0.25, correspond-
ing to a P-Δ amplification of the sidesway deflections and 
moments of 1/(1 − 0.25) = 1.33, are not permitted.

These provisions have been interpreted to apply only to 
seismic load combinations. Bachman et al. (2004) indicate 
that the calculation of θ need never include the roof live load 
or snow load except in the case of flat roof snow loads of 
greater than 30 psf, where 20% of the snow load is to be 
included unless otherwise required by the authority having 
jurisdiction. This usually limits Px to a fairly small percent-
age of the full gravity design load. As a result, for single-
story metal building frames, θ seldom exceeds the upper 
limit. Wide modular frames can have θ exceeding 0.10, but 
θ can usually be brought down to 0.10 or less by increasing 
the frame lateral stiffness slightly.

These provisions require consideration of significant P-Δ 
effects under seismic loading but do not provide any assur-
ance of adequate second-order response under other load 
combinations that have much higher gravity loading. These 
conditions are addressed in Section 4.3.

 4.3 AISC STABILITY REQUIREMENTS

Section C1 of the AISC Specification requires that “Stability 
shall be provided for the structure as a whole and for each 
of its elements.” Stability for the individual members of the 
structure is provided by compliance with the design provi-
sions of Chapters E, F, G, H and I along with the member 
bracing requirements of Appendix 6. Overall stability of the 
structure is provided by selecting an appropriate analysis ap-
proach combined with a corresponding set of member (or 
component) design constraints.

Any method of design that considers the following effects 
is permitted by the AISC Specification.

1. Second-order effects
 P-Δ effects
 P-δ effects

2. Geometric imperfections
 System out-of-plumbness
 Member out-of-straightness

3. Member stiffness reductions due to residual stress

4. Member fl exural, shear and axial deformations

5. Connection fl exibility

The second-order effects required for the design calcula-
tions are those from the geometric nonlinearity of the elas-
tic structure. In essence, this means that equilibrium must 
be considered in the deflected elastic configuration of the 
structure rather than in the initial geometry, as is the case for 
first-order elastic analysis. A wide variety of approaches for 
handling elastic geometric nonlinearity are available in com-
mercial and in-house software, some of which are discussed 
in Chapter 6. Various approximate hand methods are also 
available and are satisfactory in certain cases.

Overall geometric imperfections in a frame can be han-
dled in the preceding elastic analysis in two ways. The most 
intuitively obvious approach is to incorporate the maximum 
expected or permitted out-of-plumbness of the structure in 
the initial modeling of the geometry of the structure. An al-
ternative approach is to include notional loads, which are 
lateral loads calibrated to produce the same sidesway as the 
expected out-of-plumbness. Member out-of-straightness has 
traditionally been handled in the column strength curves 
but can alternatively be handled by explicit modeling of 
out-of-straightness between member ends, if preferred. For 
members and frames subjected predominantly to in-plane 
bending, the geometric imperfections represented by explic-
it modeling or notional loads are those in the plane of the 
member and/or frame. 

The effect of member stiffness reduction due to residu-
al stress has traditionally been incorporated in the column 
strength equations in conjunction with the use of member 
effective lengths, rather than being considered directly in 
the analysis. This approach is still permitted in the Effective 
Length Method. However, it is now possible to consider this 
effect directly in the analysis. This is the approach taken in 
the direct analysis method and the first-order analysis meth-
od procedures outlined later, which do not require calcula-
tion of effective length factors.

The calculation of axial and flexural deformations is a ba-
sic component of the direct stiffness approach used in most 
modern elastic frame analysis software. Shear deformations 
are not often included in the analysis because their influence 
on the results is usually small, and therefore, the extra re-
quired calculations are not justified. For cases in which shear 
deformations are significant, they are an option to include in 
most general analysis programs and can be incorporated into 
in-house software.

Connection flexibility is routinely handled in elastic anal-
ysis software for cases in which the connections are fully 
restrained (FR) moment connections or simple shear con-
nections by specifying ideally rigid or ideally pinned con-
nections, respectively. For prismatic members, the AISC 
Specification Commentary (AISC, 2005) suggests that a 
connection with a rotational secant spring stiffness of at least 
20EI/L at full-service loads can be considered rigid and one 
with a stiffness below 2EI/L can be considered pinned with 
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respect to stiffness. However, connection strength must also 
be considered when evaluating whether connections may be 
considered as ideally rigid or ideally pinned. 

Bjorhovde, Colson and Brozzetti (1990) propose a con-
nection classification system that may be interpreted as fol-
lows: Connections may be considered rigid when they have 
a secant rotational stiffness greater than 0.5EI/d at 0.7Mp of 
the connecting member, where d is the member depth. Con-
nections with a secant rotational stiffness less than 0.1EI/d 
at 0.2Mp of the connecting member should be considered as 
pinned. Although the Bjorhovde et al. (1990) system was 
originally developed with prismatic members in mind, it 
may be applied as an approximate classification approach 
in frames composed of web-tapered members, using d as the 
depth of the member at the connection. Connections with 
stiffnesses between these limits are classified as partially 
restrained (PR). Inclusion of PR connection stiffness and 
strength in the analysis is required by Section B3.6b of the 
AISC Specification. Including PR spring stiffnesses in off-
the-shelf or in-house software is technically straightforward, 
but is complicated by shakedown behavior in PR connec-
tions and the fact that connections cannot be designed until 
after the members are selected. A number of commercial 
software programs currently allow the engineer to also ad-
dress connection strength by defining the connection’s full 
moment-rotation response. Section B3.6 of the Specification 
also requires that the ductility of simple and PR connections 
be checked.

 4.4 STABILITY DESIGN METHODS

The AISC Specification provides three stability design meth-
ods that account for items 1 through 3 in Section 4.3. In the 
following discussions these methods are referred to as:

1. The Effective Length Method (ELM), referred to as 
“design by second-order analysis” in Section C2.2a of 
the AISC Specifi cation.

2. The Direct Analysis Method (DM) in Appendix 7 of 
the AISC Specifi cation.

3. The First-Order Analysis Method (FOM), referred to 
as “design by fi rst-order analysis” in Section C2.2b of 
the AISC Specifi cation.

Each of the methods holds certain advantages. The AISC 
Specification also permits the use of any other design meth-
od that accounts for all of the elements listed in Section 4.3; 
however, selecting from the three methods included in the 
AISC Specification is the most practical approach for most 
engineers.

The primary advantage of the ELM is that experienced 
steel engineers will already be familiar with many of its 

elements. The DM holds the advantages that (1) it may be 
used for all structures and load combinations, (2) it pro-
vides the most accurate assessment of internal forces and 
moments, and (3) columns may be designed without calcu-
lation of K factors. The virtues of the FOM are that (1) it 
permits design without a second-order analysis (an assumed 
second-order amplification is implicit in this method), and 
(2) it permits the design of columns without the calculation 
of K factors.

Theoretical details of the differences between the methods 
are covered in the AISC Specification Commentary and nu-
merous research papers (Maleck and White, 2003; Deierlein, 
2003, 2004; Kuchenbecker et al., 2004; Surovek-Maleck and 
White, 2004a, 2004b; Nair, 2005; Martinez-Garcia and Zi-
emian, 2006; White et al., 2007a; and White et al., 2007b) 
and are not discussed in this document. From an implemen-
tation viewpoint, the differences between the methods are in 
the areas of:

1. Limits on structural characteristics that establish the 
applicability of the methods

2. The type of structural analysis to be employed (fi rst-
order or second-order)

3. The method of accounting for nominal out-of-straight-
ness and out-of-plumbness (use of notional loads or 
explicit modeling of imperfections in the analysis, or 
implicit inclusion in column strength equations via ef-
fective lengths)

4. The method for considering stiffness reduction from 
residual stress effects (directly in the analysis or im-
plicitly in column strength equations via effective 
lengths)

5. Corresponding design constraints

The three methods differ (in analysis details, notional 
loads, and stiffness reductions, for example) and result in 
somewhat different required strengths for use in design. In 
general, for structures with significant second-order effects, 
the DM and the FOM will generate larger and more realistic 
sidesway moments than those determined using the ELM. 
On the other hand, the calculated in-plane column available 
strengths are larger and more easily determined using the 
DM and FOM. This is because these methods increase the 
member required flexural strengths, Mr , rather than reduce 
the member required axial strengths, Pc, to account for side-
sway instability effects. Conversely, the ELM accounts for 
sidesway stability effects by reducing Pc via the use of K > 1 
in moment frames, where K is the effective length factor, or 
by explicit use of buckling analyses to determine the theo-
retical column buckling loads. 

The following sections provide an overview of the major 
implementation differences between the three methods.
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 4.4.1 Limits of Applicability

The DM is permitted for all structures and all load combi-
nations. The usage of the other two methods is restricted 
to load combinations in which Δ2nd / Δ1st ≤ 1.5, where Δ2nd 
is the second-order drift and Δ1st is the first-order drift for 
the strength combination being considered (the ASD load 
combinations multiplied by 1.6 or the LRFD load combina-
tions). The limit of Δ2nd / Δ1st ≤ 1.5 is applicable to an analysis 
conducted using unreduced stiffness, EA and EI. If reduced 
member stiffness is used for the analysis, as discussed in 
Section 4.4.4, this limit is Δ2nd / Δ1st ≤ 1.71. Clear span frames 
often meet this restriction for all load combinations, but wide 
modular frames will often exceed this limit under the maxi-
mum gravity load combinations. As a result, the DM is the 
only method suitable for some load combinations of many 
metal building frames unless the designer is willing to limit 
Δ2nd / Δ1st to no more than 1.5 for every load combination.

 4.4.2 Type of Analysis

Both the ELM and the DM require that a second-order 
analysis be performed. As the name implies, the FOM does 
not require a second-order analysis. It provides a second-
order amplification indirectly through the use of larger no-
tional loads. The detailed requirements for the second-order 
analysis calculations required by the ELM and DM differ 
somewhat and are covered later in the sections that describe 
each method in detail.

 4.4.3 Out-of-Plumbness

Each of the three methods requires the application of no-
tional loads, or explicit modeling of the out-of-plumbness 
on which the notional loads are based, for at least some load 
combinations in the structural analysis. Notional loads are 
artificial lateral loads applied to the structure to account for 
geometric imperfections and other nonideal conditions that 
can induce or increase the sway of a structure.

Notional Loads

In all the methods of the AISC Specification, the equations for 
calculating notional loads are based on an assumed uniform 
out-of-plumbness of L / 500. However, Appendix 7, Section 
7.3(2), of the Specification states that this can be adjusted 
by the ratio of the expected out-of-plumbness to L / 500 to 
account for a lesser assumed out-of-plumbness. Prior to 
the 2007 edition, Section 6.8 of Common Industry Standards 
in the Metal Building Systems (MBMA, 2002) specified an 
out-of-plumbness erection tolerance of L / 300. Structures 
to be built to this standard should have their notional loads 
or nominal out-of-plumbness increased by the factor of 
(L / 300)/(L / 500) = 1.67 relative to the specified AISC value 
to account for this more liberal tolerance. The latest edition 

of the Metal Building Systems Manual (MBMA, 2007) has 
eliminated this exception; therefore, structures to be built 
to the 2007 MBMA standard should be designed using the 
notional loads specified in the AISC Specification.

Notional loads are calculated for each load combination 
as a percentage of the vertical load acting at each level for 
that load combination. Although the text of the AISC Speci-
fication defines notional loads as a percentage of the gravity 
load, the notional loads are more properly defined as a per-
centage of the vertical load, regardless of the source. This 
is apparent based on the direct correspondence between no-
tional loads and the alternative explicit modeling of out-of-
plumbness. 

The physical out-of-plumb imperfections in the structure 
may be in either sidesway direction. However, the direction 
of application of the notional loads for each load combina-
tion is selected to increase the overall destabilizing effect 
for that combination. For gravity-only load combinations 
that cause a net (i.e., weighted average) sidesway either due 
to nonsymmetry of loads or geometry, the notional loads 
should be applied in the direction that increases the net side-
sway. For structures with multiple stories or levels, and in 
which the sidesway deformations are in different directions 
in different stories or levels, it is necessary to include a pair 
of load combinations, separately considering the notional 
loads associated with a uniform out-of-plumbness in each 
direction. For load combinations involving lateral loads, the 
notional loads should be applied only in the direction that 
adds to the effect of the lateral loads. One need not apply 
notional loads in a direction opposite from the total lateral 
loads to minimize the reduction in internal forces in certain 
components due to the lateral load. For gravity load combi-
nations with no sidesway, it is necessary to include a pair of 
load combinations, separately considering notional loads in 
each direction, unless symmetry of the frame is enforced by 
other means.

Separate notional loads should be applied at the top of 
each of the columns in proportion to the vertical load trans-
ferred to each column. In columns with axial forces applied 
at an intermediate location along the length, a proportional 
notional load should be placed at that location on the col-
umn. For any instances in which questions arise about the 
calculation and application of notional loads, the question 
may be answered by determining the lateral forces that are 
equivalent to the effect of the intended uniform nominal out-
of-plumbness.

For ASD designs, notional loads calculated based on 
ASD load combination factors must be increased by a fac-
tor of 1.6 in all three methods. The 1.6 factor overestimates 
the second-order effects somewhat in ASD designs rela-
tive to LRFD, particularly where second-order effects are 
significant.
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Explicit Modeling of Out-of-Plumbness

The AISC Specification permits explicit modeling of out-
of-plumbness in the structural analysis in lieu of the use of 
notional loads for the DM. This avoids the need to determine 
how to apply notional loads in buildings with sloping roofs 
or floors, where the building geometry is nonrectangular or 
nonregular, or in structures where axial loads are applied at 
intermediate positions along the length of a member. This 
approach is easy to automate in computer-based design, and 
it allows the designer to better understand the true nature of 
internal forces set up in the structure from out-of-plumbness 
effects. However, unless automated methods of specify-
ing out-of-plumbness are available in analysis software, it 
is often easier to apply notional loads along with the other 
applied loads on the structure rather than to modify the struc-
ture geometry.

The modeled out-of-plumbness should be consistent with 
the erection tolerances specified for the structure. Therefore, 
if the erection tolerances are smaller than L / 500, a reduced 
uniform out-of-plumbness equal to the specified erection 
tolerance may be employed. Also, where a larger erection 
tolerance is permitted, this larger tolerance should be used 
as the modeled uniform out-of-plumbness in the structural 
analysis. 

The physical out-of-plumb imperfections in the struc-
ture may be in either sidesway direction. However, the di-
rection of the modeled uniform out-of-plumbness for each 
load combination is selected to increase the overall desta-
bilizing effect for that combination. For gravity-only load 
combinations that induce a net sidesway, the modeled out-
of-plumbness should be in the direction of the net sidesway. 
For structures with multiple stories or levels and in which 
the sidesway deformations are in different directions in dif-
ferent stories or levels, two different uniform out-of-plumb 
geometries are required to capture the potential overall de-
stabilizing effects in both directions. For load combinations 
involving lateral loads, the out-of-plumbness should be in 
the direction of the lateral loads. For a gravity load combina-
tion with no sidesway, it is necessary to consider a uniform 
out-of-plumbness in both directions unless any symmetry of 
the design is enforced by other means. 

Only two different out-of-plumb geometries are typically 
required to cover the overall destabilizing effects for all load 
combinations. In contrast, the corresponding notional loads 
discussed in the previous section are, in general, different 
for each load combination (although the notional loads may 
be taken conservatively as the maximum values from all the 
load combinations). 

For the ELM in all cases, and the DM in some cases, 
the notional loads are specified as minimum lateral loads 
in the gravity-only load combinations. That is, they are not 
used in combination with other lateral loads. Consequently, 

out-of-plumbness need not be included in the model for 
these load combinations. Modeling out-of-plumbness for all 
load combinations is permitted but will result in conserva-
tive results for lateral load combinations in which notional 
loads are not required. In cases where the notional loads are 
specified as additive rather than minimum, the model must 
include out-of-plumbness (or out-of-plumbness effects via 
notional loads) regardless of the magnitude of the lateral 
loads.

 4.4.4 Stiffness Reduction

Only the DM requires explicit consideration of member 
stiffness reduction due to the combined effects of residual 
stresses and distributed yielding with member axial forces 
and moments in the structural analysis. This is handled by 
reducing the flexural stiffness in moment frames and the 
axial stiffness in braced frames to 80% of their nominal elas-
tic values in the second-order structural analysis. Where the 
axial compression load in a flexural member contributing to 
lateral stability exceeds 50% of the yield load, the flexural 
stiffness is further reduced. This is discussed in detail later. 
The other two methods consider member stiffness reduc-
tions only implicitly, either via the calculation of the column 
strengths using effective lengths or by the calculation of a 
larger notional lateral load.

 4.4.5 Design Constraints

The DM and the FOM permit the design of columns for 
in-plane buckling using a length equal to the actual unsup-
ported length (K = 1), or a smaller length in some cases. 
For moment frames, the ELM requires the calculation and 
use of elastic buckling load values (or the corresponding K 
factors) determined using a sidesway buckling analysis of 
the structure unless Δ2nd / Δ1st ≤ 1.1. If Δ2nd / Δ1st ≤ 1.1, the 
in-plane flexural buckling load may be calculated based on 
the actual member length and idealized pinned-pinned end 
conditions (i.e., K = 1).

 4.5 COMMON ANALYSIS PARAMETERS

Several parameters are used throughout the text of the stabil-
ity requirements in the AISC Specification to establish limits 
of applicability of various provisions and in other calcula-
tions. These are defined as follows:

 4.5.1 α Pr

αPr is the required axial compressive strength, Pr, multiplied 
by the factor α where α = 1.6 for ASD and α = 1.0 for LRFD.

For LRFD, αPr is simply the required axial compressive 
strength determined using the LRFD load combination fac-
tors for the load combination under consideration. For ASD, 
αPr is the required axial compression strength determined 
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using ASD load combination factors multiplied by 1.6, to 
give an approximation of the required strength under ulti-
mate conditions.

αPr is used in the determination of whether the FOM may 
be used. It is also used in the DM to determine whether P-δ 
effects can be neglected in the calculation of the sidesway 
displacements, and to calculate the required stiffness reduc-
tion. αPr is also used in approximate second-order analysis 
techniques such as the B1-B2 method.

 4.5.2 PeL or γγeLPr

PeL is the nominal in-plane elastic flexural buckling strength 
of a member subjected to axial compression force and hav-
ing assumed ideally pinned-pinned end conditions. This 
parameter is used extensively in the provisions for both the 
ELM and the DM as well as in the member design provi-
sions. Consideration of the actual member rotational and 
sidesway restraint end conditions is handled subsequently 
within the AISC design procedures, via the calculation of 
other buckling loads or the corresponding effective length 
factors in the ELM, and via the modeling of the structure for 
the structural analysis. 

In many cases it is more convenient to work with the 
equivalent parameter γeLPr, which is the required strength, 
Pr, multiplied by the elastic buckling load ratio, γeL = PeL/Pr. 
That is, 

 PeL = γeLPr (4.5-1)

where
PeL = Euler buckling load, evaluated in the plane of 

bending, kips.  This is the internal axial force at 
elastic buckling of the member, assuming simply 
supported end conditions.

Pr =  required axial strength for the column, kips
γeL = a scalar ratio

Regardless of the complexity of the loadings (e.g., stepped 
loading or distributed axial loading) or the member geom-
etry (e.g., tapered and/or stepped geometry), there is only 
one γeL corresponding to the member elastic flexural bucking 
strength. However, for stepped or distributed axial loading, 
Pr and PeL vary along the member length.

The elastic flexural buckling strength can also be ex-
pressed as:

 FeL = γeLFr (4.5-2)

where
FeL =  axial stress at elastic buckling of the member, as-

suming simply supported end conditions, ksi
Fr = required axial stress for the column, ksi

For a straight, geometrically perfect prismatic column with a 
constant axial loading, 

 P
EI

L
eL = π2

2
 (4.5-3)

For a tapered I-shaped member, there is no exact closed-
form solution for PeL. However, several approaches to a solu-
tion are available:

1.  PeL can be determined by an elastic eigenvalue buck-
ling analysis. Many advanced fi nite element and/
or frame analysis programs can be used to calculate 
elastic buckling multipliers, γeL, corresponding to a 
given required axial strength using numerical eigen-
value solution techniques. PeL is then determined as the 
required axial compression strength, used in the anal-
ysis, multiplied by γeL. The quality of such solutions 
depends on the accuracy of tapered member modeling, 
element choice, and meshing. The engineer should run 
the benchmark problems provided in Appendix C to 
establish the appropriateness of the computer program 
and modeling techniques prior to use in design. Al-
though this approach has the advantage of handling es-
sentially any imaginable geometry and loading, it may 
not be practical in a production environment unless the 
fi nite element modeling is automated and integrated 
into analysis-design software.

2.  PeL can be determined by the method of successive 
approximations (Timoshenko and Gere, 1961). This 
technique uses an iterative beam analysis to fi nd the 
axial load, γeLPr, at which the beam defl ections result-
ing from applied P-δ moments are a uniform multiple 
of the defl ections assumed to calculate the P-δ mo-
ments. This is an iterative process in which (1) a load, 
Pr, and a defl ected buckling mode shape are assumed; 
(2) the P-δ moments from the assumed defl ections 
times the assumed axial load are calculated; (3) the 
calculated P-δ moments are applied in a beam analy-
sis of the member to compute a new defl ected shape; 
and (4) the new defl ected shape is substituted as a new 
approximation for the buckled geometry. The process 
is continued iteratively until the calculated defl ections 
everywhere along the beam are a uniform multiple, γeL, 
of the assumed defl ections. PeL is then determined as 
the assumed axial load, Pr, multiplied by γeL.

 The method of successive approximations requires 
relatively few calculations compared with eigenvalue 
solution techniques, is easily programmed, and is 
adaptable to handle various tapers and steps in the 
member loading and geometry. The method is illustrat-
ed in Timoshenko and Gere (1961) with an example in 
a format easily adapted to a spreadsheet or procedural 
computer program. See Appendix C of this Guide for 
benchmark examples of web-tapered members.

017-030_DG25_Ch4.indd   23 6/21/11   1:46 PM



24 / FRAME DESIGN USING WEB-TAPERED MEMBERS / AISC DESIGN GUIDE 25

3.  PeL can be approximated with good accuracy for a 
single linearly tapered member with simply supported 
conditions and supporting a constant internal axial 
force, and having no plate or taper changes, as:

 P
EI

L
eL =

′π2

2  (4.5-4)

where

I ′ =  moment of inertia calculated using the depth 
at 0.5L (Ismall /Ilarge)0.0732 from the small end, 
in.4

 This empirically derived expression gives results 
accurate to within several percentage points for the 
range of members addressed in this document. The 
preceding approximation should not be used for any 
buckling solution in which anything other than simply 
supported end conditions are assumed. That is, the 
preceding expression for I ′ is valid solely for idealized 
simply supported end conditions.

4. For linearly tapered members subjected to nonuniform 
axial compression, γeL can be calculated conservatively 
as PeL /(Pr)max, where PeL is calculated using Equation 
4.5-4 and (Pr)max is the largest internal axial compres-
sion along the member length.

 4.5.3 ΔΔ2nd /Δ1st

Δ2nd / Δ1st is the ratio of story drifts calculated from a second-
order and first-order analysis, respectively. This ratio is used 
to establish the applicability of the approved design meth-
ods, to establish the applicability of the K = 1 provisions 
of the ELM [2005 AISC Specification Section C2.2a(4)], to 
determine whether notional loads are additive to lateral loads 
in the DM, and also in the B1-B2 method.

Unless otherwise noted, this ratio is calculated from analy-
ses using unreduced member stiffnesses. For information on 
calculating Δ2nd / Δ1st for gable frames, see Section 6.3.3.

Δ2nd / Δ1st is calculated separately for each load combina-
tion. This parameter gives an indication of the significance 
of the second-order effects in a load combination. No maxi-
mum limit on Δ2nd / Δ1st is established by the AISC Specifica-
tion (AISC, 2005). Values below 1.1 are considered insig-
nificant. Values above 1.5 are considered large second-order 
effects. As such, the design must be conducted using the DM 
when this threshold is exceeded. Values between 1.1 and 1.5 
are considered moderate second-order effects. The design 
may be conducted either by the DM or by the ELM in these 
cases.

The reader is cautioned against using the ratio M2nd / M1st 

as a substitute for Δ2nd / Δ1st. The moments usually include 
significant first-order gravity components that will obscure 
the magnitude of the second-order effects.

 4.6 DETAILED REQUIREMENTS OF THE 
STABILITY DESIGN METHODS

The following sections summarize the detailed requirements 
for each of the three stability design methods discussed ear-
lier. Additional information on first-order and second-order 
frame analysis is given in Chapter 6.

 4.6.1 The Effective Length Method (ELM)

1. The ELM is only permitted for load combinations 
where Δ2nd / Δ1st ≤ 1.5.

2. A second-order analysis, considering both P-Δ and 
P-δ effects as detailed below, is required: 

(a) The P-Δ effects on the nodal displacements must 
be considered. The P-δ effects on the nodal dis-
placements may be neglected in the calculation of 
required strengths because the ELM beam-column 
unity checks are insensitive to these effects.

(b) The P-δ effects on the internal element moments 
(between the nodes) may be neglected in indi-
vidual elements in load combinations when αPr ≤ 
0.02Peℓ for that element,

 where

   Peℓ =   flexural column buckling load based on 
the cross-section geometry and the ele-
ment length between the nodal locations 
with idealized simply supported nodal 
end conditions, kips

 Otherwise, they must be considered.

(c) Internal P-δ moments may be included by per-
forming a second-order analysis to determine 
the nodal displacements, forces and moments, 
and then calculating the second-order internal 
moments in each element as follows (Guney and 
White, 2007):

(i) Calculate δ1st, the fi rst-order displacement 
perpendicular to the element chord caused by 
the second-order nodal forces and any applied 
loads within the element length, at any loca-
tions of interest.

(ii) Calculate the second-order displacement at 
each of the preceding locations as

 
PP

δ
δ
α2

1

1
nd

st

r e�

=
− /

 (4.6-1)

  where Peℓ may be estimated for linearly 
tapered segments using PeL from Equation 
4.5-4, but applied to the element length, ℓ.

017-030_DG25_Ch4.indd   24 6/21/11   1:46 PM



AISC DESIGN GUIDE 25 / FRAME DESIGN USING WEB-TAPERED MEMBERS / 25

(iii) Calculate the required internal second-order 
moment at each of the above locations as

 M M Pr st r nd= +1 2α δ  (4.6-2)

 where

   M1st =  first-order moment at a given po-
sition along the element length, 
caused by the second-order nodal 
forces and any applied loads within 
the element length, kip-in.

This procedure provides good accuracy for general 
cases involving prismatic or nonprismatic member 
geometry for values of αPr /Peℓ ≤ 0.7. This limit is 
satisfi ed in all cases when (1) a P-Δ only analysis 
or a second-order analysis using an element geo-
metric stiffness based on element cubic transverse 
displacements is used, and (2) the number of 
elements per member is greater than or equal to 
that specifi ed by the guidelines discussed subse-
quently in Section 6.2. Alternatively, the nonsway 
amplifi er

 B
Cm

1 =
PPα1 r e�− /  

≥ 1.0  (4.6-3a)

may be applied to all the moments M1st throughout 
the length of a given element, except those at the 
ends. Equation 4.6-3a is useful for elements in 
linearly tapered members that do not have any ap-
plied transverse loads. In this case, the equivalent 
uniform moment factor, Cm, may be expressed ap-
proximately as

 . .C f( )fm = +0 6 0 4 1 2/  (4.6-3b)

where

f2 = the absolute value of the largest com-
pressive fl exural stress at either element 
end node, ksi

f1 = 2fmid − f2, ksi (4.6-3c)

fmid = fl exural stress due to M1st at the mid-
length of the element in the fl ange con-
taining the stress f2, taken as positive for 
compression and negative for tension, ksi

Equation 4.6-3b accounts for the fact that a linear 
variation in M1st produces a nonlinear variation in 
the corresponding fl exural stress along the length 
of a tapered member. The value f1 is the fl ange 
stress obtained by extending a line through f2 and 
fmid to the opposite element end node.

In many cases, Equation 4.6-3a gives B1 = 1.0, 
indicating that the second-order amplifi cation of 
the internal moments may be neglected. Equations 
4.6-1 and 4.6-2 generally provide better accu-
racy for both prismatic and nonprismatic members 
compared to the amplifi ed moments determined 
using Equation 4.6-3a. This is particularly true for 
elements with transverse applied loads, where the 
AISC Specifi cation gives a conservative value of 
Cm = 1.0 and Table C-C2.1 in the AISC Specifi ca-
tion Commentary gives refi ned equations for Cm 
that are applicable only for prismatic members 
with ideally pinned or ideally fi xed end conditions. 
The use of Cm = 1.0 is recommended for general 
cases with transverse applied loads. 

(d) P-δ effects must be included in the calculation of 
elastic column buckling strengths, PeL, when using 
either an eigenvalue or the successive approxima-
tion approach. See Appendix B1.2 for guidance on 
subdividing the members into a sufficient number 
of smaller-length elements for matrix eigenvalue 
analyses. 

(e)  The accuracy of any second-order analysis pro-
gram used should be tested using appropriate 
benchmark problems such as those provided in 
Appendix C. Particular care should be taken to es-
tablish whether P-δ effects are correctly included 
in the analysis. Sections 6.2.1 and 6.2.2 provide 
guidelines for subdivision of members to ensure 
sufficient accuracy with respect to these effects.

 The amplified first-order elastic analysis ap-
proach (e.g., the B1-B2 approach) is an acceptable 
second-order analysis method. If this approach is 
employed, Equation C2-6b in the AISC Specifica-
tion (or the more refined Commentary Equation 
C-C2-6 not including the limit 1.7HL /ΔH) is rec-
ommended for the definition of ΣPe2 in Equation 
C2-3.

 Implementation of the B1-B2 may involve more 
work compared to other alternative approaches 
[e.g., a general P-Δ analysis as discussed earlier, 
or the alternate amplifier-based method discussed 
by White et al. (2007a, 2007b)]. The amplifier-
based methods are particularly difficult to imple-
ment and lose accuracy for gable frames, where 
the sidesway column displacements are generally 
not the same, and for frames with unequal height 
columns, where the methods must be modified to 
account for the different column heights (White 
and Kim, 2006).
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 The reader should note that the term amplified 
first-order elastic analysis is typically used to re-
fer to the specific B1-B2 method of calculating the 
second-order forces and moments. It is important 
to distinguish this term from the terms used for the 
different design methods, i.e., the ELM, the DM 
and the FOM. The B1-B2 second-order analysis 
method is one of many methods of second-order 
analysis that may be used for the calculation of the 
forces and moments in either of the design meth-
ods that require a second-order analysis (the ELM 
and the DM).

3. Given the satisfaction of the preceding requirements 
for the second-order elastic analysis calculations, the 
ELM structural analysis model must include the fol-
lowing attributes: 

(a) The analysis is conducted with nominal elastic 
stiffnesses, i.e., no member stiffness reductions.

(b) Minimum lateral loads of 0.002 times the verti-
cal load, Yi, applied at each level are required 
for all gravity-only load combinations. For gable 
frames and for frames with stories having unequal 
height columns, it is recommended that individual 
notional lateral loads equal to 0.002yi should be 
applied at the top of each column, where yi is the 
vertical load transferred to the column at its top. 
Also, for columns with intermediate vertical loads 
along their length, a notional lateral load of 0.002yi 
should be applied at the location of the intermedi-
ate vertical loads, where yi is the intermediate ver-
tical load applied to the column. This is necessary 
to capture the geometric imperfection effects on 
different height columns, as well as to capture the 
behavior in cases where the lateral displacements 
are generally different at the different column 
locations.

 In lieu of applying the notional lateral loads, one 
can impose an out-of-plumbness of 0.002H on the 
structure for analysis of the gravity-only load com-
binations, where H is the vertical height above the 
base, or in general, the node(s) having the mini-
mum vertical coordinate. This may be implemented 
by shifting all the nodes of the analysis model 
horizontally by 0.002H relative to the node(s) at 
the base of the structure. For cases in which ques-
tions arise about the appropriate application of the 
notional lateral loads, one should always return to 
the model where the uniform out-of-plumbness is 
represented explicitly in the structural model. The 
appropriate notional loads are the ones that are 
equivalent to the effect of this out-of-plumbness.

 For both notional loads and explicit modeling of 
out-of-plumbness, the factor 0.002 is based on an 
assumed erection tolerance of L/500. For adjust-
ments to this factor to account for structures built 
to different tolerances, see Section 4.4.3.

(c) For ASD, the analysis is conducted using loads of 
1.6 times those from ASD load combinations. The 
resulting member forces and moments are divided 
by 1.6 for the member design calculations. The 1.6 
multiplier also applies to any notional loads added 
to satisfy item 3(b).

4. The in-plane fl exural buckling strength of columns 
and beam-columns, Pni, is determined as follows:

(a) For members in load combinations where Δ2nd / Δ1st 
≤ 1.1, calculate Pni based on the actual unbraced 
length with K = 1.0, i.e., assuming idealized 
pinned-pinned end conditions on the actual un-
braced length.

(b) For other cases, Pni must be calculated using an 
effective length factor, K, or the corresponding 
column buckling stress, Fe, determined from a 
sidesway buckling analysis of the structure. Be-
cause member taper violates one of the inherent 
assumptions of the traditional alignment charts, 
more advanced methods of determining K or Fe 

are normally required. See Appendix B for further 
information on the calculation of elastic buckling 
strengths of tapered columns and frames.

 4.6.2 The Direct Analysis Method (DM)

1. The DM is permitted for all structures and load combi-
nations.

2. A second-order analysis with characteristics similar to 
those discussed in item 2 of Section 4.6.1 is required. 
However, there are a few important differences. The 
following discussion repeats much of the discussion in 
item 2 of Section 4.6.1 with an emphasis on the spe-
cifi c requirements in the context of the DM.

(a) Generally, both the P-Δ and P-δ effects on the 
nodal displacements must be considered in the 
DM. The AISC Specification Appendix 7, Section 
7.3(1), indicates that if αPr < 0.15PeL for all mem-
bers whose flexural stiffnesses are considered to 
contribute to the lateral stability of the structure, 
the P-δ effect on the lateral displacements may be 
neglected in the analysis. Although not defined in 
the AISC Specification, “members whose flexural 
stiffnesses are considered to contribute to the lat-
eral stability” in this context is intended to apply to 
both beams and columns in unbraced frames. For 
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nonrectangular structures such as gable frames, the 
term “lateral displacements” may be interpreted 
as the general nodal displacements in the frame 
analysis model. 

 With the exception of sway columns without sig-
nificant transverse member loads, where both ends 
have substantial rotational restraints, this Guide 
recommends that when αPr > 0.05 PeL, where PeL 
is the elastic buckling load based on the overall 
member length determined as discussed in Sec-
tion 4.5.2 but using the reduced elastic stiffness 
of the DM analysis model discussed later, the 
member should be subdivided with intermediate 
nodes along its length when a P-Δ only analysis 
is employed. This ensures better accuracy of the 
element nodal displacements and moments along 
the member length than will be achieved using 
the previous AISC Specification rule when αPr 
exceeds 0.05 PeL. The sidesway moments in fixed-
base columns, and columns with top and bottom 
rotational restraint from adjacent framing, may be 
analyzed sufficiently with a P-Δ only analysis and 
a single element per member when αPr ≤ 0.12 PeL. 
Second-order analysis procedures that include 
both P-Δ and P-δ effects in the formulation re-
quire fewer elements. Detailed guidelines for the 
necessary number of elements are provided subse-
quently in Sections 6.2.1 and 6.2.2 of this Guide. 
These guidelines and the above recommendations 
are based on Guney and White (2007). In many 
cases a sufficient subdivision will occur naturally 
with tapered members due to the frequency of 
plate and/or geometry changes. However, extra 
nodes may be required for prismatic members and 
long tapered members without changes of plates 
or taper.

(b) The P-δ effects on the internal element moments 
(between the nodes) may be neglected in individual 
elements in load combinations when αPr ≤ 0.02 Pe� 
for that element (Guney and White, 2007), 

where
Pe� =  fl exural buckling load based on the cross-

section geometry and the element length 
between the nodal locations with ideal-
ized simply supported nodal end condi-
tions, determined using the reduced elas-
tic stiffnesses of the DM analysis model 
discussed later, kips

(c) Internal P-δ moments may be included by per-
forming a second-order analysis to determine the 
nodal displacements, forces and moments, then 
calculating the second-order internal moments in 

each element using the forces, moments, and dis-
placements calculated with the reduced stiffness 
from the DM analysis as follows:

(i) Calculate δ1st, the fi rst-order displacement 
perpendicular to the element chord caused by 
the second-order nodal forces and any applied 
loads within the element length, at any loca-
tions of interest.

(ii) Calculate the second-order displacement at 
each of the preceding locations as 

 δ
δ

2
1

nd
st=

PPα1 r e�− /
 (4.6-4)

  where Pe� may be estimated for linearly-
tapered segments using PeL from Equation 
4.5-4, but applied to the element length, ℓ, and 
using the reduced elastic stiffness of the DM 
analysis model.

(iii) Calculate the required internal second-order 
moment at each of the above locations as

 M M Pr st r nd= +1 2α δ  (4.6-5)

  where 

M1st =  the fi rst-order moment at a given 
position along the element length, 
caused by the second-order nodal 
forces and any applied loads with-
in the element length, kip-in. 

This procedure provides good accuracy for general 
cases involving prismatic or nonprismatic member 
geometry for values of αPr / Pe� ≤ 0.7 (Guney and 
White, 2007). This limit is satisfied in all cases 
when a sufficient number of elements is employed 
in a P-Δ-only analysis or a second-order analysis 
using an element geometric stiffness based on 
element cubic transverse displacements using the 
guidelines discussed subsequently in Section 6.2. 
Alternatively, the AISC (2005) nonsway amplifier

 B
Cm

1 =
PPα1 r e�− /

 ≥ 1.0  

  (4.6-6a, from Spec. Eq. C2-2)

 may be applied to all the moments, M1st, through-
out the length of a given element, except those at 
the ends. Equation 4.6-6a is useful for elements 
in linearly tapered members that do not have any 
transverse applied loads. In this case, the equiva-
lent uniform moment factor, Cm, may be expressed 
approximately as
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 C . . ffm = +0 6 0 4 1 2/( ) (4.6-6b)

 where

  f2 =  the absolute value of the largest compres-
sive fl exural stress at either element end 
node, ksi

  f1 = 2fmid − f2 , ksi (4.6-6c)
  fmid =  fl exural stress due to M1st at the mid-

length of the element in the fl ange con-
taining the stress f2, taken as positive for 
compression and negative for tension, ksi 

 Equation 4.6-6b accounts for the fact that a linear 
variation in M1st produces a nonlinear variation in 
the corresponding flexural stress along the length 
of a tapered member. The value f1 is the flange 
stress obtained by extending a line through f2 and 
fmid to the opposite element end node.

 In many cases, Equation 4.6-6a gives B1 = 1.0, 
indicating that the second-order amplification of 
the internal moments may be neglected. Equation 
4.6-4 in conjunction with Equation 4.6-5 generally 
provides better accuracy for both prismatic and 
nonprismatic members compared to the applica-
tion of Equation 4.6-6a. This is particularly true 
for elements with transverse applied loads, where 
the AISC Specification gives a conservative value 
of Cm = 1.0 and Table C-C2.1 in the AISC Com-
mentary gives refined equations for Cm that are ap-
plicable only for prismatic members with ideally 
pinned or ideally fixed end conditions. The use of 
Cm = 1.0 is recommended for general cases with 
transverse applied loads. 

(d)  The accuracy of any second-order analysis pro-
gram used should be tested using appropriate 
benchmark problems such as those provided in 
Appendix C. If the benchmark tests are satisfied, 
the software may be assumed to provide adequate 
results without subdividing the members into mul-
tiple elements as recommended in item 2(a). 

3. Given the satisfaction of the preceding requirements 
for the second-order elastic analysis calculations, the 
DM analysis model must include the following attri-
butes: 

(a) The analysis must be conducted with elastic stiff-
ness reductions for all members whose flexural 
stiffness is considered to contribute to the lateral 
stability of the structure. Although not defined in 
the AISC Specification, “members whose flexural 
stiffness is considered to contribute to the lateral 

stability” in this context is intended to apply only 
to columns in unbraced frames. This is accom-
plished by reducing the value of EI and/or EA in 
the formulation of the member stiffnesses.

 For members whose flexural stiffnesses contribute 
to the lateral stability:

 If αPr /Py ≤ 0.5, use 0.8EI in the flexural stiffness 
terms of the second-order analysis.

 If αPr /Py > 0.5, use 0.8τb EI in the flexural stiffness 
terms of the second-order analysis,

 where

 τ
α α

b
r

y

r

y

P

P

P

P
= −

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟4 1  (4.6-7)

Py =  smallest value of AgFy of the 
member, kips

 This reduction need only be applied to the portion 
of a member where αPr /Py > 0.5. Alternatively, 
notional loads of 0.001Yi, in addition to those 
required by item 3(b) (following), may be used 
along with a stiffness of 0.8EI in lieu of reducing 
the stiffness to 0.8τb EI.

 For members whose axial stiffnesses contribute to 
the lateral stability (primarily members of braced 
frames), use 0.8EA in the axial stiffness terms of 
the second-order analysis.

 In lieu of modifying the cross-section properties, A 
and I, by 0.8, it is acceptable (and recommended) 
to reduce the modulus of elasticity, E, by the fac-
tor 0.8 for all members in the second-order elastic 
analysis. This avoids small problems that can oc-
cur in some cases, such as unintended additional 
drift of a frame due to differential column axial 
shortening between gravity columns and lateral-
load resisting columns when beams or rafters from 
the lateral-load resisting system are framed into the 
gravity columns. This approach also gives results 
that more closely match those from the more ad-
vanced methods to which the DM was calibrated. 
Note that the value of E is not reduced when ap-
plying other Specification provisions, such as 
slenderness limit checks (2005 AISC Specification 
Table B4.1) or column strength equations.

(b)  Minimum lateral loads of 0.002 times the vertical 
load, Yi, applied at each level are required for grav-
ity-only load combinations when Δ2nd / Δ1st ≤ 1.5 
(Δ2nd / Δ1st ≤ 1.71 based on the reduced stiffness). 
Alternatively, explicit out-of-plumbness may be 
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modeled in lieu of notional loads.

 For load combinations where Δ2nd / Δ1st > 1.5 
(Δ2nd / Δ1st > 1.71 based on the reduced stiffness), 
the notional lateral loads must be added to any lat-
eral loads already present in the combination. 

 For gable frames and for frames with stories having 
unequal height columns, it is recommended that 
individual notional lateral loads equal to 0.002yi be 
applied at the top of each column, where yi is the 
vertical load transferred to the column at its top. 
Also, for columns with intermediate vertical loads 
along their length, a notional lateral load of 0.002yi 
should be applied at the location of the interme-
diate vertical loads, where yi is the intermediate 
vertical load applied to the column. 

 These notional load and out-of-plumbness magni-
tudes are based on a specified maximum out-of-
plumbness of L/500. For structures where a dif-
ferent out-of-plumbness is specified, the notional 
loads should be scaled linearly. Further discussions 
of this implementation of the notional lateral loads 
are provided in item 3(b) of Section 4.6.1 and in 
Section 4.4.3.

(c) For ASD, the analysis is conducted using loads of 
1.6 times those from ASD load combinations. The 
resulting member forces and moments are divided 
by 1.6 for member design calculations. The 1.6 
multiplier also applies to any notional loads added 
to satisfy item 3(b).

4. The in-plane fl exural buckling strength of columns 
and beam-columns, Pni, is calculated based on the 
actual unbraced length with K = 1.0 except as noted 
for the three cases discussed here, where simplifying 
extensions to the AISC Specifi cation are provided. The 
reduced member stiffnesses in item 3(a) should not be 
used in the member strength calculations. The member 
resistances are always calculated using nominal (unre-
duced) stiffnesses. 

(a) For members with αPr ≤ 0.10PeL at all locations 
along their length, or stated more simply, for 
α /γeL ≤ 0.10, Pni may be taken as the equivalent 
cross-section axial yield strength accounting for 
local buckling effects, QPy. This simplification is 
permissible because the in-plane stability effects 
are very minor at the member level for columns 
or beam-columns that satisfy the preceding limit. 
Many members in a typical single-story metal 
building frame will satisfy this limit. Note that PeL 
and γeL in these expressions do not contain an over-
bar, i.e., these limits are checked using the nominal 

elastic stiffness.

(b)  If P-δ effects are included in the analysis model 
and an appropriate member out-of-straightness be-
tween nodes is also included in the model, Pni may 
be taken as QPy, even when α /γeL > 0.10. This is 
permissible because the reduced stiffness and out-
of-straightness in the analysis account sufficiently 
for the in-plane stability effects at the member 
level. The appropriate member out-of-straightness 
is an imperfection of 0.001L in the direction that 
the member deforms relative to a chord between 
its support points or points of connection to other 
members. A chorded representation of the out-
of-straightness with a maximum amplitude at the 
middle of the unsupported length is considered 
sufficient.

(c) For gable rafters, when the midspan work point 
(cross-section centroid) is offset above the rafter 
chord by Lchord /50 or more, where Lchord is the span 
length along the rafter chord between the cross-
section centroids at the tops of the columns, Pni 

may be taken as QPy. This is permissible because 
the offset of the midspan work point for these 
types of members nullifies the importance of any 
out-of-straightness relative to the chord between 
the ends of the on-slope length of the rafters. For 
rafters framing between equal height columns, 
this requirement is satisfied in all cases when the 
pitch of the rafter centroidal axis is at least 2 in 12 
throughout the span length.

 4.6.3 The First-Order Method (FOM)

1. The FOM is only permitted for load combinations 
where Δ2nd / Δ1st ≤ 1.5. Because the objective of using 
the FOM is likely to be the avoidance of a second-
order analysis, it is suggested that the ratio Δ2nd / Δ1st 

be determined using the AISC Specifi cation Equation 
C2-3 for B2 with ΣPe2 taken from Equation C2-6b.

 In addition, for all members whose fl exural stiffness 
contributes to the lateral stability, αPr must be less 
than or equal to 0.5Py, where Py is the lowest axial 
yield strength of the member.

2. A fi rst-order analysis is performed as follows:

(a) The analysis is conducted without member stiff-
ness reductions.

(b) Notional loads must be applied in addition to any 
lateral loads in each load combination. These are 
calculated as:

 ( )Ni Yi= 2.1 Δ /L  ≥ 0.0042Yi 
  (4.6-8, Spec. Eq. C2-8)
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where

Δ /L = highest ratio of fi rst-order story drift un-
der the strength load combination, Δ, to 
the story height, L, for all stories of the 
structure calculated using fi rst-order de-
fl ection results

  Contrary to the user note in AISC Speci-
fi cation Section C2.2b, for the FOM it 
is not necessary to multiply the gravity 
loads in the ASD load combinations by 
1.6 prior to the analysis and then sub-
sequently divide the results by 1.6, be-
cause the analysis is linear. Therefore, 
for design by ASD, Δ in Equation 4.6-8 
should be based on 1.0 times the ASD 
load combinations. It is emphasized that 
this is the maximum fi rst-order drift of 
all the stories under the strength load 
combination being considered.

Yi = vertical load introduced at each level for 
each load combination, kips. For ASD, 
multiply the vertical loads by 1.6.

For gable frames or frames with stories with un-
equal height columns, Equation 4.6-8 should be 
used to determine a notional lateral load, Ni, ap-

plied at the top of each column; Yi is defi ned as the 
vertical load transferred to each column at its top; 
and Δ /L is the maximum ratio of the individual 
column Δ values to the individual column heights, 
L, throughout the structure. For columns with 
intermediate vertical loads along their length, the 
equation should be used to determine a notional 
lateral load, Ni, applied at the location of the inter-
mediate vertical loads, where Yi is the intermediate 
vertical load applied to the column.

(c) The first-order analysis is carried out using the 
normal LRFD or ASD combinations. For ASD, do 
not use the 1.6 factor on the loads or results other 
than as required in the calculation of the notional 
loads in item 2(b).

(d) All moments from the first-order analysis must be 
multiplied by B1. For web-tapered members, the 
amplification factor in Equation 4.6-1 is recom-
mended for the calculation of B1.

3. The in-plane fl exural buckling strength of columns 
and beam-columns, Pni, is determined based on the 
actual unbraced length between stories and idealized 
pinned-pinned end conditions (K = 1.0).
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Chapter 5
Member Design

The following sections present specifi c member design 
provisions from the AISC Specifi cation adapted to tapered 
members. For tapered members, some calculations, limit 
states and strength ratios are better expressed in terms of 
stresses rather than forces or moments; therefore, stress ex-
pressions are sometimes used in the following presentations, 
even where force-based design is ultimately used.

Because most members used in metal building frames are 
beam-columns, the results for the individual force or mo-
ment checks are presented in terms of strength ratios for fur-
ther use in the combined strength equations.

In all of the following examples, it is assumed that the 
required strengths, Pr and Mr, include all second-order ef-
fects that must be determined from the structural analysis 
(see Section 4.6).

In the examples, in places where LRFD and ASD calcula-
tions should result in identical intermediate results but do 
not, due to rounding, the ASD value is arbitrarily used for 
further calculations. These places are indentifi ed in the text.

 5.1 KEY TERMINOLOGY

The following term is used extensively in this section:

γe =  the ratio of the member elastic buckling force or 
moment to the required strength. This term is con-
venient for expressing the elastic buckling strength 
of the various buckling limit states. Its meaning is 
discussed in detail in Section 5.3.

 5.2 AXIAL TENSION

Axial tension in tapered members is handled using the provi-
sions of Chapter D of the AISC Specifi cation with no modi-
fi cations. Like prismatic members, tapered tension members 
are subject to the limit states of tensile yielding and tensile 
rupture. The available strength is the lower of the available 
strengths calculated from these two limit states.

For tapered members, the available strength varies along 
the length of the member due to the taper, so the selection 
of cross sections to evaluate depends both on the change in 
loading and the geometry along the length of the member. 
For a pure tension member under a constant tension load, 
such as a hanger, the available strength is determined at the 
locations of minimum gross or effective area, as applicable. 
For members in combined tension and fl exure or members 
with tension that varies along the length, additional tensile 
strength checks will normally be necessary at other possible 
critical locations.

 5.2.1 Tensile Yielding

Nominal strength for the tensile yielding limit state is calcu-
lated as the yield stress multiplied by the gross area:

 P F An y g=  (5.2-1, Spec. Eq. D2-1)

φt t= =0 90 1 67. .(LRFD) (ASD)Ω

or expressed as strength or stress ratios for use in interaction 
equations:
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 5.2.2 Tensile Rupture

Nominal strength for the tensile rupture limit state is calcu-
lated as the tensile stress multiplied by the effective net area:

 P F An u e=  (5.2-4, Spec. Eq. D2-2)

 φt t= =0 75 2 00. .(LRFD) (ASD)Ω

or expressed as strength or stress ratios for use in interaction 
equations:
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 (LRFD) (5.2-6)

For the common case in metal building construction where 
isolated bolt holes in columns and beams are present for 
attachment of connected items, such as purlins and fl ange 
braces, but are not used as the means of connection between 
frame members, the effective net area, Ae, is taken as the 
gross area less the area of each bolt hole in the cross section 
calculated using a hole width z in. wider than the nominal 
hole diameter. In other cases, where the member tension 
force is transferred by bolts or welds on some, but not all, 
elements of the cross section, Ae must be calculated using 
AISC Specifi cation Equation D3-1 with the appropriate 
shear lag factor, U, from Specifi cation Table D3.1.
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 Example 5.1—Tapered Tension Member with Bolt Holes

Given:

Determine the available tensile strength of the member shown in Figure 5-1. Assume two n-in.-diameter holes in each fl ange, 
12 in. from the small end, provided for the attachment of connected items.

Material Properties
Fy = 55 ksi
Fu = 70 ksi

Geometric Properties
Top fl ange  = PL 4 × 6
Bottom fl ange  = PL 4 × 6
Web thickness  = 0.125 in.

Solution:

Check tensile yielding limit state

The small end controls by inspection. Using AISC Specifi cation Section D2, determine the available tensile yielding strength.

Ag = (2)(6.00 in.)(0.250 in.) + (12.0 in.)(0.125 in.)

 = 4.50 in.2

Pn = Fy Ag (Spec. Eq. D2-1)

 = 55 ksi (4.50 in.2)

 = 248 kips

LRFD ASD

P Pc t n=

= ( )
φ

   kips0 90 248.

= 223 kips

P
P

c
n

t

=

=

Ω

   
kips

1.67

248

= 149 kips

Check tensile rupture limit state

The cross section at the bolt holes controls by inspection. The bolt holes are provided for the attachment of connected items; 
therefore, using AISC Specifi cation Table D3.1, assume U = 1.0. Using Specifi cation Sections D2 and D3, determine the avail-
able tensile rupture strength:

At the cross section location with the bolt holes,
h  = 12.0 in + (12.0 in./60.0 in.)(18.0 in. − 12.0 in.)

  = 13.2 in.

 Ae = AnU (Spec. Eq. D3-1)

  

n in. + z in.   0.250 in.  = 2 6.00 in. 0.250 in.  + 13.2 in. 0.125 in.  − 4( )( )( ) ( )( ) ( ) 1.0 

= 3.90 in.2

(⎡⎣ ⎤⎦( ))

 Pn = Fu Ae (Spec. Eq. D2-2)

  = 70 ksi(3.90 in.2)
  = 273 kips

Fig. 5-1. Tapered tension member with bolt holes.
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 5.3 AXIAL COMPRESSION

Tapered columns are subject to the same limit states as pris-
matic columns, but they are more likely to be governed by 
limit states that do not control the design of hot-rolled wide 
fl ange members. Tapered members used in metal buildings 
frequently have slender fl anges and/or webs with respect to 
column axial compression. For this reason, the following 
column design provisions are based on AISC Specifi cation 
Section E7, which incorporates the effects of slender ele-
ments. When all elements are nonslender, these provisions 
are an extension of Sections E3 and E4, which address mem-
bers with nonslender elements.

The procedure for calculating the column strength of a 
slender-element prismatic I-shaped member in the AISC 
Specifi cation is as follows:

1. For each unbraced length, calculate the elastic buckling 
stress, Fe, for each applicable buckling limit state, the 
calculation of which varies according to limit state. 
For prismatic I-shaped members, the AISC Specifi ca-
tion provides equations for the calculation of the elastic 
buckling stress, Fe, for the limit states of:

(a) Flexural buckling of all doubly or singly symmetric 
members, checked independently about each axis,

  F
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 (5.3-1, Spec. Eq. E3-4)

(b) Torsional buckling of doubly symmetric members,
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 (5.3-2, Spec. Eq. E4-4)

(c) Flexural-torsional buckling of singly symmetric 
sections, 
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 (5.3-3, Spec. Eq. E4-5)

2. Use the smallest of these elastic stresses in the AISC 
Specifi cation Equations E7-2 or E7-3, as applicable, 
with Q = 1 to calculate a nominal buckling stress, Fcr.

 When Fe ≥ 0.44QFy

  F QFcr

QF

F
y

y

e=
⎛

⎝
⎜
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⎞

⎠
⎟
⎟

0 658.  (5.3-4, Spec. Eq. E7-2)

 When Fe < 0.44QFy

  Fcr = 0.877 Fe (5.3-5, Spec. Eq. E7-3)

3. Check the slenderness of the web and both fl anges to 
determine an overall slenderness reduction factor, Q. For 
the web slenderness check, use f = Fcr as calculated in 
Step 2 to calculate Qa (see AISC Specifi cation Section 
E7.2). For the slenderness checks of the fl anges, calcu-
late Qs for each fl ange (see AISC Specifi cation Section 
E7.1) that will be in net compression when the axial 
force is combined with any bending moment present in 
the load combination under consideration. If both fl anges 
are in compression under the combined loading, use the 
smaller of the two Qs terms calculated; otherwise, use Qs 
for the fl ange in compression. Calculate Q = Qs Qa.

4. If Q = 1, the nominal buckling stress, Fcr, is as calculated 
in Step 2. Otherwise, if Q < 1.0, recalculate Fcr using the 
governing Fe with Q as calculated in Step 3.

LRFD ASD

P Pc t n=

= ( )
φ

   kips0 75 273.

= 205 kips

P
P

c
n

t

=

=

Ω

   
kips

2.00

273

= 137 kips

Tensile rupture at the bolt holes controls the design strength.

LRFD ASD

Pc = 205kips Pc = 137 kips
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5. The nominal buckling stress, Fcr, is multiplied by the 
gross column area to obtain the nominal strength, Pn.

 P F An cr g=   (5.3-6, Spec. Eq. E7-1)

φc c= =0 90 1 67. .(LRFD) (ASD)Ω

 or expressed as strength or stress ratios for use in AISC 
Specifi cation Equations H1-1 or H2-1:
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For tapered columns the basic steps are the same; however, 
the foregoing procedure must be modifi ed somewhat to ac-
count for variation of the required stress under load, fr, and 
the elastic buckling stress, Fe, that occurs over the length of 
the member in a tapered column.

The following procedures make extensive use of the term 
γe. For any column under compression loading, there is a 
buckling multiplier, γe, by which the required strength (load-
ing) is multiplied to obtain the elastic buckling strength of 
the column (Fe = γe  fr). γe is also algebraically equivalent to 
the factor by which the required stress, fr, at every point in the 
column is multiplied to arrive at the stress at that point when 
elastic buckling is reached; that is, γe  fr is the elastic buckling 
stress, Fe, at each point in the column. γe can be computed us-
ing a number of methods outlined in Appendix A, including 
fi nite element eigenvalue buckling solutions, the method of 
successive approximations or, for simple cases, an approxi-
mate closed-form equation.

The use of the term γe provides several advantages. First, it 
makes it possible to describe the elastic buckling strength of 
members ranging from a prismatic member with a uniform 
axial load to a geometrically complex nonprismatic member 
subject to a nonuniform axial loading. In addition, both the 
fi nite element and successive approximation methods pro-
vide their buckling strength results directly as γe, a multiplier 
of the applied load used in the analysis.

Because Fe = γe  fr, AISC Specifi cation Equations E7-2 and 
E7-3 can be rewritten in an algebraically equivalent form as 
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When 
QF

f

y

e rγ
> 2 25.

  F fcr e r= 0 877. γ  

The method for calculating the strength of a tapered column 
follows the fi ve basic steps outlined earlier, with some modi-
fi cation. In the subsequent discussion, it is assumed for con-
venience that the columns are oriented with the plane of the 
web in the plane of the frame. Buckling in the plane of the 
member web is designated by the subscript x. With tapered 
I-shaped members, the slenderness of the web varies along 
the length of the member. Also, the slenderness of the web and 
fl anges can vary along the length due to changes in the cross-
section plates at specifi c locations. For prismatic I-shaped 
members subjected to uniform axial compression, one can 
determine the smallest γe value from each of the potential 
buckling modes and each of the applicable unbraced lengths. 
Given this minimum γe, or the corresponding Fe, the column 
strength may be determined by substituting this single value 
into Equations 5.3-9 or 5.3-10. However, because both γe 
and the cross-section element slenderness values affect the 
column resistance, one cannot determine the governing un-
braced length and buckling limit state simply by fi nding the 
smallest γe value when the cross-section slenderness values 
are not constant along the member length. For nonprismatic 
members, it is necessary in general to compute and compare 
the nominal strengths for each buckling limit state in each 
applicable unbraced length.

In the following discussion, it is assumed that each mem-
ber is oriented with its strong (or x-) axis in the plane of 
the frame and its weak (or y-) axis perpendicular to the 
frame. In cases where members are rotated 90°, x and y sub-
scripts continue to refer to the in-plane and out-of-plane axes, 
respectively.

Find the governing limit state and unbraced length by 
determining the highest ratio of required strength to avail-
able strength, Pr /Pc, for the column, considering both the in-
plane and out-of-plane behavior and the applicable buckling 
limit states. Columns with equal fl anges should be checked 
for fl exural buckling about both axes. Columns with equal 
fl anges also should be checked for torsional buckling when-
ever the torsional buckling unbraced length, KzL, is larger 
than the minor-axis fl exural buckling unbraced length, KyLb 
(KzL and KyLb are defi ned in subsequent sections). Columns 
with unequal fl anges are classifi ed as singly symmetric sec-
tions. They should be checked for fl exural-torsional buck-
ling involving bending about the cross-section axis of sym-
metry and for fl exural buckling about the other cross-section 
principal axis. Columns with different out-of-plane fl ange 
brace spacing on each fl ange should also be checked for 
constrained-axis torsional buckling.

In the usual case where out-of-plane bracing is pro-
vided by girts and purlins and diagonal fl ange braces con-
nected to them, there is a single in-plane unbraced length 
for the member, the length between the member supports 
or the connection(s) to other members in the plane of bend-
ing. However, there is usually a series of out-of-plane un-
braced lengths to consider. Find the highest ratio of required 
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strength to available strength, Pr /Pc, from the one in-plane 
unbraced length, (Pr /Pc)i, and the one or more out-of-plane 
unbraced lengths, (Pr /Pc)o.

For each applicable column buckling limit state and each 
of the corresponding unbraced lengths, perform the follow-
ing procedure:

 5.3.1 Calculate Elastic Buckling Strength

For all elastic buckling modes given herein, with the ex-
ception of in-plane fl exural buckling, it is assumed that the 
required axial strength, Pr , within the unbraced length is es-
sentially constant. For constant Pr , γe is calculated as Pe /Pr . 
For in-plane buckling in cases in which the internal axial 
force varies along the member length, the method of succes-
sive approximations and eigenvalue analysis are useful tools 
for determining the multiple of the internal forces, Pr , or 
internal stresses, fr, at which the theoretical member elastic 
fl exural buckling occurs. For the unbraced lengths associ-
ated with other buckling modes, the variation in Pr  along the 
unbraced length is usually minor. In these cases, Pr  should 
be taken as the largest axial force within the applicable un-
braced length. Acceptable accuracy is not ensured using an 
average or weighted average value for Pr .

In-Plane Flexural Buckling

For in-plane fl exural buckling, calculate the elastic buck-
ling ratio, γex, or Pex using the appropriate end conditions 
(see Equation 2.2-1). For members designed using the DM 
or the FOM, assume pinned end conditions. For members 
designed using the ELM with Δ2nd / Δ1st > 1.1, the actual side-
sway restraint must be included in a buckling analysis either 
explicitly or implicitly through the use of a K factor. Note 
that γex is a function of the magnitude and distribution of 
the axial load and is therefore potentially different for each 
load combination. This step is not necessary if using the DM 
and an explicit member out-of-straightness is included us-
ing an analysis model that accounts for both P-Δ and P-δ 
effects (the possibility of elastic buckling in the plane of the 
member is captured within the analysis model in this case). 
It also is not necessary if using the DM and α /γeL ≤ 0.10 
(the infl uence of in-plane stability considerations on Pn is 
negligible in this case). Several techniques for calculating γex 
and Pex are given in Appendix A.

Out-of-Plane Flexural Buckling

Doubly symmetric I-shaped members must be checked for 
out-of-plane fl exural buckling. Calculate the elastic buckling 
strength using the following equation, which is algebraically 
equivalent to AISC Specifi cation Equation E3-4:

  P
EI

K L
ey

y

y b

=
( )
π2

2  (5.3-11)

Use the section properties at the midpoint of the unbraced 
length. Ky is normally taken as 1.0 with the exception of 
members designed by the ELM and where sidesway is unre-
strained in the direction normal to the cross-section y-axis. 
Ky may be taken less than 1.0 if an analysis shows that a 
smaller value may be used. However, in this case, if an ad-
jacent unbraced length is assumed to provide restraint such 
that Ky < 1.0, the adjacent unbraced length must be checked 
using the corresponding Ky > 1.0 for the load combination 
under consideration. Calculate γey as Pey /Pr .

For sections with a change in the fl ange plates at no more 
than 20% of the distance from the smaller end of the un-
braced length, and if the change in the lateral moment of 
inertia of the fl anges is less than a factor of 2, the change in 
the fl ange plates may be neglected. Use the Iy of the cross 
section within the longer portion of the unbraced length. For 
other cases, such as unbraced lengths with more than one 
change of fl ange plates, fl ange changes further from the ends 
of the unbraced length or signifi cantly stepped axial loads, 
Pey should be determined using analytical methods similar 
to those used for determining in-plane fl exural buckling 
strength. The method of successive approximations is very 
useful for these cases.

For doubly or singly symmetric members with different 
brace spacing on the two fl anges, check the shorter unbraced 
lengths using these provisions, and check the longer un-
braced lengths between the locations where both fl anges are 
braced using the constrained-axis torsional buckling provi-
sions below.

Torsional Buckling

Doubly symmetric I-shaped members with fl ange braces on 
both fl anges at the same locations along the length of the 
column are potentially subject to torsional buckling. How-
ever, the member nominal resistance based on torsional 
buckling is never more than a few percent smaller than 
that due to out-of-plane fl exural buckling for all practical 
member geometries (and out-of-plane fl exural buckling usu-
ally governs). That is, for KzL ≤ Ky Lb, torsional buckling of 
doubly symmetric I-shaped members does not need to be 
considered (White and Kim, 2006). For cases where KzL > 
KyLb, calculate the elastic torsional buckling strength from 
the following equation, which is algebraically equivalent to 
AISC Specifi cation Equation E4-4:

  P
EC

K L
GJ

r r
ez

w

z x y

=
( )

+
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥ +

π2

2 2 2

1
 (5.3-12)

using the section properties at the midpoint of the torsional 
unbraced length. The length, KzL, is usually taken as the 
distance between locations where the member is restrained 
against twisting. For the case of a cantilevered column fully 
restrained against twisting and warping at one end and with 
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the other end free, KzL = 2L, where L is the length between 
the fi xed and free ends. Calculate γez as Pez /Pr .

Although J is frequently taken as 
bt3

3
∑

 
, a more accurate 

expression for I-shaped members of normal proportions is 
recommended instead:

J
ht b t t

b

b t t

b
w ft ft ft

ft

fc fc fc

fc

= + −
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ + −

⎛3 3 3

3 3
1 0 63

3
1 0 63. .

⎝⎝
⎜⎜

⎞

⎠
⎟⎟  (5.3-13)

 
where

bfc = compression fl ange width, in.
bft = tension fl ange width, in.
h = web height, in.
tfc = compression fl ange thickness, in.
tft = tension fl ange thickness, in.
tw = web thickness, in.

Flexural-Torsional Buckling

Singly symmetric members with signifi cantly different 
fl anges having fl ange braces on both fl anges at the same 
locations along the length of the column are subject to 
fl exural-torsional buckling. This limit state need not be 
checked unless the fl ange widths are different, or in cases 
where the fl ange widths are the same, if the ratio of the thick-
er to thinner fl ange thickness exceeds 1.5 (White and Kim, 
2006). Calculate the elastic fl exural-torsional strength from 
the following equation, which is algebraically equivalent to 
AISC Specifi cation Equation E4-2, using the section proper-
ties at the midpoint of the unbraced length:

 P
P P

H P P
eFT

ey ez ez

ey ez

=
+⎛

⎝
⎜

⎞

⎠
⎟ − −

+( )⎢

⎡

⎣

⎢

⎢

⎤

⎦

⎥
⎥
⎥

2
1 1

P P Hey4
2  (5.3-14)

where
Ag = gross section area, in.2

H = 1
2 2

2
−

+x y

r
o o

o

Pey = elastic fl exural column buckling strength, kips
Pez = elastic torsional buckling strength, kips
xo, yo = coordinates of shear center with respect to the 

centroid, in.
ro = polar radius of gyration about the shear center, in.

Calculate γeFT as PeFT /Pr .

Constrained-Axis Torsional Buckling

If the inside fl ange brace spacing is larger than the outside 
girt or purlin spacing, calculate the elastic constrained-axis 
torsional buckling strength as (Timoshenko and Gere, 1961):

P
E C I a

K L
GJ

r r a
eCAT

w y s

z b inside x y c

=
+( )

( )
+

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥ + +

π2 2

2 2 2 2

1
 (5.3-15)

where

C
h I

I

I

w
o y

y

y

=
+

2
1

1

2

1

 (5.3-16)

ho = distance between fl ange centroids, in.

I
t b

y
f f

1
1 1

3

12
=  (outside fl ange) (5.3-17)

I
t b

y
f f

2
2 2

3

12
=  (inside fl ange) (5.3-18)

ac =  distance from centroid of girt or purlin to centroid 
of column, in., as shown in Figure 5-2

as =  distance from centroid of girt or purlin to shear 
center of column, in., as shown in Figure 5-2

y
t h I

I
yo

f o y

y

= + −1 2

2
 (5.3-19)

For usual cases, KzLb inside is the distance between braced 
points on the inside fl ange.

Use the section properties at the midpoint of the inside un-
braced length, Lb inside > Lb outside. Calculate γeCAT  as PeCAT /Pr .

 5.3.2  Calculate Nominal Buckling Stress Without 
Slender Element Effects, Fn1

The critical nominal buckling stress without slender element 
effects, Fn1, is calculated at the location within the unbraced 
length with the highest ratio of required strength to yield 
strength, frmax /Fy . Fn1 is used to establish the stresses used in 
calculating the slenderness reduction factor for the web, Qa, 
throughout the unbraced length.

Locate the highest ratio of fr /Fy in the unbraced length. 
This will be at the small end of the unbraced length under 
consideration or at a location where fl ange or web plates 
change. Using this maximum value of frmax /Fy  and γe for 
the buckling limit state being checked, calculate Fn1 from 

Fig. 5-2. Constrained-axis torsional buckling parameters.
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Equations 5.3-20 or 5.3-21 as appropriate:

For 
F

f

y

e rmaxγ
≤ 2 25. ,

  F Fn

F

f
y

y

e r

1 0 658=
⎛
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⎜

⎞

⎠

⎟
⎟

. maxγ
 (5.3-20a)

For 
F

f

y

e rmaxγ
> 2 25. ,

  Fn1 = 0.877γe frmax (5.3-21a)

Alternatively, these equations may be expressed as:

For 
F

F

y

e

≤ 2 25. ,

  F Fn
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e
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.  (5.3-20b)

For 
F

F

y

e

> 2 25. ,

  F Fn e1 0 877= .  (5.3-21b)

As an alternative form:

For 
P

P

y

e

≤ 2 25. , 
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⎟
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.  (5.3-20c)

For 
P

P

y

e

> 2 25. ,

  F
P

A
n

e

g
1 0 877= .  (5.3-21c)

Calculate the nominal buckling strength multiplier, γn1, as:

  γn1 = Fn1 /frmax (5.3-22)

using the required stress, frmax, at the location where Fn1 was 
computed. 

 5.3.3  Calculate Slenderness Reduction Factor, Q, and 
Locate Critical Section

By checking various locations along the unbraced length, 
determine the maximum value of fr /QFy, where Q is calcu-
lated according to the AISC Specifi cation Section E7 with 
the following modifi cations. For calculation of the web slen-
derness, Qa, use f = γn1 fr at each location along the column to 
be checked. In computing Qs, use the smaller of the values 
of Qs computed for both fl anges. For a particular load com-
bination, if there is no net compression stress in one of the 
fl anges due to a larger offsetting fl exural tension, that fl ange 

need not be considered in the Qs calculations for that load 
combination.

For members with nonslender fl anges over the entire 
unbraced length, the critical location will always be at the 
small end of the unbraced length under consideration or at 
a plate transition unless there is a step in the load between 
locations of plate changes. In many cases, this will be the 
same location at which Fn1 and γn1 were computed. 

For unbraced lengths with slender fl anges, the shallow 
end may be the critical location; however, there is also a 
local minimum for the effective area at the location where 
h/tw = 131. This is the slenderness limit at which there is no 
further decrease in the fl ange reduction factor, Qs, as the web 
depth increases [see AISC Specifi cation Section E7.1(b)]. 
If h/tw  =  131 anywhere along the unbraced length, those 
locations also should be checked. If h/tw < 131 at all loca-
tions along the unbraced length, the deep end also should be 
checked. These rules may be further simplifi ed by checking 
both ends, the location with the deepest web if not at an end, 
and any locations where h/tw = 131.

If the axial load varies signifi cantly along the length of 
the member, checks at more locations may be necessary to 
identify the critical location.

 5.3.4  Calculate Nominal Buckling Stress with 
Consideration of Slender Elements, Fcr

Calculate the nominal buckling stress, Fcr, at the critical lo-
cation determined in Section 5.3.3, using γe for the buckling 
limit state under consideration with Q and fr at the critical 
location (i.e., the location with the maximum fr /QFy).

For 
QF

f

y
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≤ 2 25. ,

  F QFcr
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f
y

y

e r=
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

0 658. γ
 (5.3-23a)

For Q = 1.0 or 
QF

f

y

e rγ
> 2 25. ,

  Fcr = Fn1 (5.3-24a)
or

For 
QF

F

y

e

≤ 2 25. ,

  F QFcr
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F
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⎞

⎠
⎟
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0 658.  (5.3-23b)

For Q = 1.0 or 
QF

F

y

e

> 2 25. ,

  Fcr = Fn1 (5.3-24b)

031-138_DG25_Ch5.indd   37 6/21/11   1:46 PM



38 / FRAME DESIGN USING WEB-TAPERED MEMBERS / AISC DESIGN GUIDE 25

If Q = 1 or if 
QF

f

y

e rγ
> 2 25. , there is no infl uence of local buck-

ling of the plate elements on the column resistance. In this 
case, the critical location will be the same as the location at 
which Fn1 was calculated and Fcr = Fn1.

 5.3.5 Strength Ratio

Calculate the strength or stress ratio for the buckling limit 
state under consideration using the required strength, fr, and 
the nominal buckling stress, Fcr, at the critical location deter-
mined in Section 5.3.3: 

 
P

P

f

F

f

F
r

c

r

c

c a

cr

= =
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 (ASD) (5.3-25)

 
P

P

f

F

f

F
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r

c

u

c cr

= =
φ

 (LRFD) (5.3-26)

 5.3.6 Other Considerations

The strength of a purely axially loaded column is the small-
est of the in-plane strength for the column and the strength 
of each possible out-of-plane buckling limit state for each 
unbraced length. In the case of beam-columns, it is gener-
ally necessary to evaluate the combination of axial force and 
fl exure separately for each unbraced length. In this case, for 
each unbraced length, the axial strength is the lower of the 
in-plane strength for the whole column and the governing 
out-of-plane strength determined for that unbraced length.

As a simplifi cation, it is always conservative to calculate 
Qa using Fn1 = Fy, rather than calculating a more precise Fn1 

in Section 5.3.2. Also, it is always conservative to skip Sec-
tion 5.3.2 altogether and simply to use f = Fy at all the mem-
ber cross sections in determining Q in Section 5.3.3.

In some cases, the preceding process can be simplifi ed 
even further for the in-plane strength calculation. When us-
ing the DM, if the in-plane elastic buckling strength is suf-
fi ciently large or the second-order analysis is suffi ciently 
refi ned, the in-plane strength may be computed as follows:

(1) Use f based either on Fn1 = Fy, or more simply f = Fy at all 
the member cross sections in Section 5.3.3 to determine 
the cross section Q values.

(2) Calculate Pr /Pni as the largest value of fr /QFy along the 
member length.

This procedure may be used when any of the following con-
ditions are met:

(1) When α /γeL ≤ 0.10

(2) When an analysis is performed that includes both P-Δ 
and P-δ effects along with the inclusion of an explicit 
member out-of-straightness in the analysis (in addition 
to the structure out-of-plumbness)

(3) In the case of gable frame rafters, when the midspan 
work point is offset above the rafter chord by Lchord /50 
or more, where Lchord is the span length along the rafter 
chord between the cross-section centroids at the tops of 
the columns

These conditions were discussed previously in items 4a 
through 4c of Section 4.6.2.

 Example 5.2—Tapered Column with Simple Bracing

Given:

Evaluate the compressive strength of the member shown in Figure 5-3. The required concentric axial strength, including 
all second-order effects, is constant over the height of the column, neglecting the accumulating self-weight. Assume Kx = Ky = 
Kz = 1.0.

Material Properties

 Fy = 55 ksi
Fu = 70 ksi

Geometric Properties

 Left fl ange = PL 4 × 6
Right fl ange = PL 4 × 6
Web thickness = 0.125 in.
Left and right fl ange bracing at 90.0 in. above the bottom
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By inspection, the member is subject to:

A. In-plane fl exural buckling (one strength for the entire column)

B. Out-of-plane fl exural buckling—lower unbraced length

C. Out-of-Plane fl exural buckling—upper unbraced length

Torsional buckling need not be checked because the cross section is doubly symmetric and the torsional buckling length does not 
exceed the largest out-of-plane buckling length. Flexural-torsional buckling is not applicable since the cross section is doubly 
symmetric. Constrained axis torsional buckling need not be checked, because the brace spacing is identical on both fl anges.

Solution:

Table 5-1. Section Properties

Top

h 24.0 in.

h/tw 192

Ag 6.00 in.2

Ix 585 in.4

At girt

h 19.5 in

h/tw 156

Ag 5.44 in.2

At h/tw = 131

h 16.4 in.

h/tw 131

Ag 5.05 in.2

Bottom

h 12.0 in.

h/tw 96.0

Ag 4.50 in.2

Ix 131 in.4

A. In-Plane Flexural Buckling Strength

 Determine Pex

 Because the member has a single taper with no plate changes, 
use Equation 4.5-4.
At the bottom end, web height = 12.0 in., Ix,small = 131 in.4

At the top end, web height = 24.0 in., Ix,large = 585 in.4

 From Section 4.5.2, calculate I′x at a distance x from the 
small end, where

x = 0.5

0.0732

L
I

I
x small

x large

,

,

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

 0.5 144 in.
131in.

585in.

  in  from sma

4

4
= ( )⎛

⎝
⎜

⎞

⎠
⎟

=

0 0732

64 5

.

. . lll end

Web height = 12.0 in. + (64.5 in. /144 in.)(24.0 in. −12.0 in.)

 = 17.4 in.

I′x  = 289 in.4 (calculations not shown)

Fig. 5-3. Column.
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P
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29 000 289

144

3 990

    
ksi) in.

in.

    

4( ,

, kkips  (4.5-4)

Compare with the method of successive approximations solution (see Appendix C, Section C.3.1): 

 Pex = 3,980 kips

 ≈ 3,990 kips

Calculate Fn1, the nominal buckling stress, without consideration of slender elements
By inspection, under a constant axial force, the location with the largest ratio of fr /Fy is the bottom end of the column.
From Table 5-1, Ag = 4.50 in.2, and
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A
e
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e
1 0 658=

⎛

⎝
⎜
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⎞

⎠
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.

 

(5.3-20b)

  
= ( )0 658 550 0620. . ksi 

= 53.6 ksi

Calculate the nominal buckling strength multiplier, γn1, using the required stress, fr max, at the location where Fn1 was 
computed:

LRFD ASD

P Arfr max g= /

= 11.3 kips/4.50 in.2

 = 2.51 ksi

γn1 = Fn1 /fr max

 = 53.6 ksi/2.51 ksi
 = 21.4

P Arfr max g= /

= 7.50 kips/4.50 in.2

 = 1.67 ksi

γn1 = Fn1 /fr max

 = 53.6 ksi/1.67 ksi
 = 32.1

Locate critical section and calculate slenderness reduction factor, Q

Calculate 
f

QF
r

y

 at the bottom end of the column.

First, determine the slenderness reduction factor by checking the fl ange slenderness using AISC Specifi cation Table B4.1. The 
fl ange width-thickness ratio is,
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λ =

=

= ( )
=
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t
b
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f

f

  

  
in.

2 0.25in.

  

2

6 00

12 0

.

.

From Table 5-1, at the bottom end of the column, h/tw = 96.0.

From AISC Specifi cation Table B4.1, for uniform compression in fl anges of built-up I-shaped sections,

λr c yk E F= 0 64.

where

 
kc

 h tw

= 4  (AISC Specifi cation Table B4.1 footnote a)

 h/tw = 96.0 (at the bottom end of the column)

 
kc

 h tw

= 4

=

= < <

4

96 0
0 408 0 35 0 76

.
. . .where kc    o.k.

Therefore,

λr c yk E F= 0 64.

= ( )
= <

0 64 0 408 29 000 55

9 39 12 0

. . , /

. . ; ,

ksi ksi

  therefore  flanges  are slender

Determine the slenderness reduction factor, Q, using AISC Specifi cation Section E7.1. For slender-element sections,

  Q = QsQa

Determine which equation for Qs applies in AISC Specifi cation Section E7.1(b). The equation used for Qs is dependent on the 
fl ange slenderness, λ, compared to the following value:

  ( ksi) ksi

                  

1 17 1 17 0 408 29 000 55

17

. . . ,k E Fc y =

= ..2

9 39 12 0 17 2. . . ;< <   therefore, use AISC Specifi cation Equation E7-8.

Q
b

t

F

Ek
s

y

c

= − ⎛
⎝⎜

⎞
⎠⎟

1 415 0 65. .
 

(Spec. Eq. E7-8)

= − ( ) ( )
=

1 415 0 65 12 0
55

29 000

0 883

. . .
,

.

ksi

ksi 0.408
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Check web slenderness using AISC Specifi cation Table B4.1, for uniform compression in webs of doubly symmetric I-shaped 
sections:

 

λ

  

  

 

=

=

=

h

tw

in.

0.125in.

12 0

96 0

.

.

λr
y

E

F
= 1 49.

=

= <

1 49
29 000

55

34 2 96 0

.
,

. . ; ,

ksi

ksi

  therefore  the web is slendder 

Calculate Qa using AISC Specifi cation Section E7.2:

Q
A

A
a

eff=  (Spec. Eq. E7-16)

where

 A = Ag   
  = 4.50 in. from Table 5-1

 Aeff  A b tf e w= +2

 be t
E

f b t

E

f
b= − ( )

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

≤1 92 1
0 34

.
.

/
 (Spec. Eq. E7-17)

With fr = frmax at the bottom of the column, the stress, f, at which the effective width is calculated is determined as follows:  

LRFD ASD

f fn r= γ 1 max

= ( )21 4 2 51. . ksi

= 53 7. ksi

f fn r= γ 1 max

= ( )32 1 1 67. . ksi

= 53 6. ksi

Note that the difference in f between LRFD and ASD is due to rounding. Use ASD value: f = 53.6 ksi.

From AISC Specifi cation Section E7,

 

be

 
( )t

E

f b/t

E

f
b= −

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

≤1 92 1
0 34

.
.

 (Spec. Eq. E7-17)

= ( ) −1 92 0 125
29 000

53 6
1

0 34

96 0

29 000

53 6
. .

,

.

.

.

,

.
in.

 ksi

ksi

 ksi

iks

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

  = 5.12 in. < 12.0 in.

A A b teff f e w= +

= ( )( ) + ( )
=

2

2 6 5 12 0 125

3 64 2

in. in.

in.

4 in. . .

.
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Therefore,

Q
A

A
a

eff=

=

     = 3.64 in.

4.50 in.

    0.809

2

2
 

(Spec. Eq. E7-16)

 

Q

   

Q Qs a=

( )
=

= 0 883 0 809

0 714

. .

.

Determine the maximum value of fr/QFy to locate the critical section. At the bottom of the column,

LRFD ASD

f

QF
r

y

max

.
= ( )

2.51ksi

ksi0 714 55

= 0 0639.

f

QF
r

y

max

.
= ( )

1.67 ksi

ksi0 714 55

= 0 0425.

Calculate 
f

QF
r

y

 at the top end of the column (note that this is not likely to control).

From Table 5-1, Ag = 6.00 in.2 at the top end of the column.

Check fl ange slenderness
From AISC Specifi cation Table B4.1 footnote a,

λ = 12 0.  from earlier

k
h

t

c

w

= 4

=

= < = 0.35

4

24 0
0 125

0.289 0.35,

.
.

in.
in.

therefore,  use kc

From AISC Specifi cation Table B4.1, for uniform compression in fl anges of built-up I-shaped sections,

λr
c

y

k E

F
= 0 64.

=
( )

=

0 64
0 35 29 000

55

8.69 < 12.0; therefore, the flanges are slender

.
. , ksi

ksi

Determine the slenderness reduction factor, Q, using AISC Specifi cation Section E7.1. For slender-element sections,

  Q = QsQa
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Determine which equation for Qs applies in AISC Specifi cation Section E7.1(b):

1 17 1 17
0 35 29 000

55

15.9 > 12.0; therefore, use AISC Specification Equation E7-8

. .
. ,k E

F
c

y

=
( )

=

ksi

ksi

Q
b

t

F

Ek
s

y

c

= − ⎛
⎝⎜

⎞
⎠⎟

1 415 0 65. .  (Spec. Eq. E7-8)

= − ( ) ( )
=

1 415 0 65 12 0
55

29 000

0 841

. . .
,

.

ksi

ksi 0.35

Check web slenderness,

λ =

=

=

h

tw

  
in.

0.125in.

  

24 0

192

.

From earlier calculation, λr = 34.2,

λr = <34 2 192 0. . ; therefore, the web is slender

Calculate the reduction factor, Qa, using AISC Specifi cation Section E7.2.

Q
A

A
a

eff=  (Spec. Eq. E7-16)

where

 A = Ag

  = 6.00 in.2 (from Table 5-1)

 Aeff  A b tf e w= +2

 
be

 
t

E

f b/t

E

f
b= − ( )

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

≤1 92 1
0 34

.
.  (Spec. Eq. E7-17)

= ( ) −1 92 0 125
29 000

40 1
1

0 34

192

29 000

40 1
. .

,

.

. ,

.
in.

 ksi

ksi

 ksi

ksi

⎡⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= ≤6 15. in. 24.0 in.

The stress, f, at the top of the column is determined as follows:

LRFD ASD

f fn r= γ 1

= ( )21 4 1 88. . ksi
= 40 2.  ksi

f P Ar r g= /
= 11.3 kips/6.00 in.2

= 1.88 ksi

f fn r= γ 1

= ( )32 1 1 25. . ksi
= 40 1.  ksi

f P Ar r g= /
= 7.50 kips/6.00 in.2

= 1.25 ksi

Note that the difference in f between LRFD and ASD is due to rounding. Use ASD value: f = 40.1 ksi.
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Therefore,

A A b teff f e w= +

( )( ) + ( )
=

=

2

6 6 152  in. in. in. 0.125in.

3.77 in

4 .

..2

The reduction factor for slender stiffened elements is:

Q
A

A
A Aa

eff
g= =

=

, where 

= 3.77 in.

6.00 in.

    0.628

2

2

 

(Spec. Eq. E7-16)

From AISC Specifi cation Section E7, the reduction factor is:

Q Q Qs a=

= ( )
=

  

  

0 841 0 628

0 528

. .

.

The value of fr /QFy at the top of the column is,

LRFD ASD

f

QF
r

y

= ( )
1.88 ksi

ksi0 528 55.

= 0 0647.

f

QF
r

y

= ( )
1.25ksi

ksi0 528 55.

= 0 0430.

Calculate 
f

QF
r

y

 at h/tw = 131 (location where kc reaches lower limit of 0.35)

From Table 5-1, Ag = 5.05 in.2 at h/tw = 131.

Check fl ange slenderness using AISC Specifi cation Table B4.1 as follows:

  λ = 12.0 from earlier

From AISC Specifi cation Table B4.1 footnote a,

k
h

t

c

w

= 4

=

=

4

131
0.349 < 0.35; therefore, use kc = 0.35

As determined earlier, the fl ange is slender and AISC Specifi cation Section E7 applies. Determine the reduction factor, 

  Q   = QsQa

Because all terms are identical to those at the top of the column for the determination of Qs, 

 Qs = 0 841.

Check web slenderness for uniform compression in webs of doubly symmetric I-shaped sections.

λ =

=

h

tw

  131
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Based on earlier calculations using AISC Specifi cation Table B4.1, 
 λr = <34 2 131. ; therefore, the web is slender.

Calculate the reduction factor, Qa, using AISC Specifi cation Section E7.2.

 Q
A

A
a

eff=  (Spec. Eq. E7-16)

where

 A = Ag

  = 5.05 in.2 from Table 5-1

 Aeff = 2Af + betw

 

be

 

t
E

f

E

f
b= − ( )

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

≤1 92 1
0 34

.
.

b/t
 (Spec. Eq. E7-17)

= ( ) −1 92 0 125
29 000

47 8
1

0 34

131

29 000

47 8
. .

,

.

. ,

.
in.

 ksi

ksi

 ksi

ksi

⎡⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= ≤5 53. in. 16.4 in.

The stress, f, at the location where h/tw = 131 is determined as follows:

LRFD ASD

f fn r= γ 1

= ( )21 4 2 24. . ksi
= 47 9. ksi

f
P

A
r

r

g

=

= 11 3. kips

5.05in.2

= 2.24 ksi

f fn r= γ 1

= ( )32 1 1 49. . ksi
= 47 8. ksi

f
P

A
r

r

g

=

= 7 50. kips

5.05in.2

= 1.49 ksi

Note that the difference in f between LRFD and ASD is due to rounding. Use ASD value: f = 47.8 ksi.

A A b teff f e w= 2  

2= in. in. 0.125in.

     3.69

+

( )( ) + ( )
=

4 in. 6 5 53.

iin. 2

Q
A

A
A Aa

eff
g= =

=

, where 

     = 3.69 in.

5.05in.

    0.731

2

2

Therefore,
Q Q Qs a=

= ( )
=

  

  

0 841 0 731

0 615

. .

.

 (Spec. Eq. E7-16)
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The value of fr /QFy  at the location where h/tw = 131 is,

LRFD ASD

f

QF
r

y

= ( )
2.24 ksi

ksi0 615 55.
= 0 0662.

f

QF
r

y

= ( )
1.49 ksi

ksi0 615 55.
= 0 0441.

The location where h/tw = 131 is the critical location for in-plane fl exural strength, because 
f

QF
r

y

 is the largest at that point.

Calculate the nominal buckling strength at the critical location with the highest ratio of  fr /QFy

As determined, the critical location occurs where h/tw = 131 and Q = 0.615. Using AISC Specifi cation Section E7 and Section 
5.3 of this Design Guide, determine the nominal axial compressive strength as follows:

F P Aex g=

=
=

3.990 5 05

790

. kips/  in.

    ksi

2

QF

F

y

e

=
( )

= <
0 615 55

790
0 0428 2 25

.
. .

ksi

ksi
, therefore,

F QFcr

QF

F
y

y

e=
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

0 658.  (5.3-23b)

= ( ) ( )
=

0 658 0 615 55

33 2

0 0428. .

.

. ksi

ksi

P F An cr g=

= ( )
=

   ksi in.

   kips

33 2 5 05

168

2. .

Calculate the in-plane strength ratio at the location of the highest ratio of  fr /QFy

LRFD ASD

P

P

P

P
r

c

r

c n

=
φ

= ( )
11 3

0 90 168

.

.

kips

kips
= 0 0747. = 0.0746

P

P

P

P
r

c

c r

n

=
Ω

=
( )1 67 7 50

168

. . kips

kips

B. Out-of-Plane Flexural Buckling Strength—Lower Unbraced Length

Determine Pey

Calculate the out-of-plane elastic buckling strength, Pey, using properties at the middle of the 90-in. lower unbraced length.

At bottom end of the 90-in. lower unbraced length, web height = 12.0 in.
At top end of the 90-in. lower unbraced length, web height = 19.5 in.
At mid-length of the 90-in. lower unbraced length, web height = 15.8 in.

 (5.3-6, Spec. Eq. E7-1)
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The moment of inertia about the weak axis, Iy, is,

Iy =
( )( )

+
( )

=

2 0 250 6 00

12

15 8

12

9 00

3 3
. . .

.

in. in. in. 0.125in.

   in.44

The nominal elastic buckling strength, Pey, at the middle of the 90-in. lower unbraced length is,

P
EI

KL
ey

y

b

=
( )
π2

2

 (from 5.3-11)

=
( )

( )⎡⎣ ⎤⎦
=

π2

2

29 000 9 00

1 0 90 0

318

, .

. .

in.

in.

kips

4

Calculate Fn1, the nominal buckling stress without consideration of slender elements.
By inspection, under a constant axial force, the location with the largest ratio of fr /Fy is the bottom end.

From Table 5-1, Ag = 4.50 in.2 at the bottom end and therefore,

F
P

A
e

ey

g

=

=

=

318

70 7

kips

4.50 in.

   ksi

2

.

F

F

y

e

=

= <

55

70 7

0 778 2 25

ksi

ksi

     therefore  use Equation 

.

. . ; , 55 3-2 b. 0

F Fn

F

F
y

y

e
1 0 658=

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

.  (5.3-20b)

= ( )0 658 550 778. . ksi

= 39.7 ksi

Calculate the nominal buckling strength multiplier, γn1, using the required stress, frmax, at the location where Fn1 was computed:

LRFD ASD

f
P

A
r

r

g
max =

 
= 11 3. kips

4.50 in.2

 = 2.51 ksi

 

γn
n

r

F

f
1

1

39 7

2 51

=

=

max

.

.

ksi

ksi

 = 15.8

 = 1.67 ksi

f
P

A
r

r

g
max =

= 7 50. kips

4.50 in.2

 = 23.8

n

r

F

f
1

39 7

1 67

=

=

max

.

.

ksi

ksi

γn1
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Locate critical section and calculate slenderness reduction factor, Q

Calculate 
f

QF
r

y

 at bottom end of the column.

The reduction factor, Q, is determined from AISC Specifi cation Section E7 as follows,

  Q = QsQa

From the in-plane check at the bottom end of the column, Qs = 0.883.

From in-plane calculations above, the web is slender.

With fr = frmax, the stress, f, at which the effective width is calculated at the bottom end of the column is determined as follows:

LRFD ASD

f fn r= γ 1 max

= ( )15 8 2 51. . ksi
= 39 7. ksi

f fn r= γ 1 max

= ( )23 8 1 67. . ksi
= 39 7. ksi

The reduction factor, Q, is determined in accordance with AISC Specifi cation Section E7:

  Q = QsQa

where

 

be

 

t
E

f

E

f
b= −

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

≤1 92 1
0 34

.
.

( )b/t
 (Spec. Eq. E7-17)

= ( ) −1 92 0 125
29 000

39 7
1

0 34

96 0

29 000

39 7
. .

,

.

.

.

,

.
in.

 ksi

ksi

 ksi

ksii

in. in.

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= <5 87 12 0. .

Aeff = summation of the effective areas of the cross sectionn based on the reduced effective width, 

      = 2 0.25 i

be

nn. in. in. 0.125in.

     3.73in.2

( )( ) + ( )
=

6 00 5 87. .

 

Qa

 

A

A

eff

g

=

=

= 3.73in.

4.50 in.

0.829

2

2

Therefore,
Q Q Qs a=

= ( )
=

  

  

0 883 0 829

0 732

. .

.

At the bottom end,

LRFD ASD

f

QF
r

y

= ( )
2.51ksi

ksi0 732 55.
= 0 0623.

f

QF
r

y

= ( )
1.67 ksi

ksi0 732 55.
= 0 0415.

Calculate 
f

QF
r

y

 at top end of lower unbraced length.

 (Spec. Eq. E7-16)
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From Table 5-1, Ag = 5.44 in.2 at the top end of the lower unbraced length.

Check fl ange slenderness.

λ =

=

b

t
   from previous calculation12 0.

k
h

t

k  = 0.35

c

w

c

=

=

= <

4

4

19 5
0 125

0 32 0 35

   
in.
in.

   therefore use  

.
.

. . ,

Because kc is at the minimum, Qs = 0.841 from the in-plane check above

Check web slenderness.

From Table 5-1, 

λ =

=

h

tw

  156

λr = <34 2 156. ; therefore, the web is slender

LRFD ASD

= 2.08 ksi

f
P

A
r

r

g

=

= 11 3

5 44

.

.

kips

kips

f fn r= γ 1

= ( )15 8 2 08. . ksi

= 32 9. ksi

= 1.38 ksi

f
P

A
r

r

g

=

= 7 50

5 44

.

.

kips

kips

f fn r= γ 1

= ( )23 8 1 38. . ksi

= 32 8. ksi

Note that the difference in f  between LRFD and ASD is due to rounding. Use ASD value: f = 32.8 ksi.

b t
E

f

E

f
be = −

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

≤1 92 1
0 34

.
.

( )b/t
 

(Spec. Eq. E7-17)

= ( ) −1 92 0 125
29 000

32 8
1

0 34

156

29 000

32 8
. .

,

.

. ,

.
in.

 ksi

ksi

 ksi

ksi

⎡⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= <6 67 19 5. .in. in.  

From AISC Specifi cation Section E7.2,

Aeff = 2 0.25 in. in. in. 0.125 in.

     3.83 in.2

( )( ) + ( )
=

6 00 6 67. .
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Q
A

A
a

eff

g

=

=

     = 3.83in.

5.44 in.

    0.704

2

2

 
(Spec. Eq. E7-16)

From AISC Specifi cation Section E7,

Q Q Qs a 

    

    

=

= ( )
=

0 841 0 704

0 592

. .

.

LRFD ASD

f

QF
r

y

= ( )
2.08 ksi

ksi0 592 55.
= 0 0639.

f

QF
r

y

= ( )
1.38 ksi

ksi0 592 55.
= 0 0424.

Calculate 
f

QF
r

y

 at h/tw = 131 (location where kc reaches lower limit of 0.35).

From Table 5-1, h = 16.4 in. and Ag = 5.05 in.2 

Check fl ange slenderness.

Qs = 0 841.  (from previous calculation)

Check web slenderness.

λ =

=

h

tw

  131

λr = <34 2 131. ; therefore, the web is slender

LRFD ASD

( from previous 
calculation)

fr = 2 24. ksi

f fn r= γ 1

= ( )15 8 2 24. . ksi
= 35 4. ksi

( from previous 
calculation)

fr = 1 49. ksi

f fn r= γ 1

= ( )23 8 1 49. . ksi
= 35 5. ksi

Note that the difference in f between LRFD and ASD is due to rounding. Use ASD value:  f = 35.5 ksi.

b t
E

f ( )b/t

E

f
be   = −

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

≤1 92 1
0 34

.
.

 (Spec. Eq. E7-17)

= ( ) −1 92 0 125
29 000

35 5
1

0 34

131

29 000

35 5
. .

,

.

. ,

.
in.

 ksi

ksi

 ksi

ksi

⎡⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= 6.35 in. < 16.4 in.
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From AISC Specifi cation Section E7.2,

Aeff = 2 0.25 in. in. in. 0.125 in.

3.79 in.2

( )( ) + ( )
=

6 00 6 35. .

Q
A

A
a

eff

g

 

      = 3.79 in.

5.05 in.

     0.751

2

2

=

=

 

(Spec. Eq. E7-16)

From AISC Specifi cation Section E7,

Q Q Qs a=

= ( )
=

  

  

0 841 0 751

0 632

. .

.

LRFD ASD

f

QF
r

y

= ( )
2.24 ksi

ksi0 632 55.

= 0 0644.

f

QF
r

y

= ( )
1.49 ksi

ksi0 632 55.

= 0 0429.

The location where h/tw = 131 is the critical location, because 
f

QF
r

y

 is the largest at that point.

Calculate the nominal buckling strength at the critical location

Q = 0 632.  from the location where h/tw = 131 

F
P

A
e

ey

g

=

=

=

   
kips

in.

   ksi

318

5 05

63 0

2.

.

QF

F

y

e

=
( )

= <

0 632 55

63 0

0 552 2 25

.

.

. . ; ,

ksi

ksi

         therefore  usse Equation 5 3-23b.

F QFcr

QF

F
y

y

e = 0 658.
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟  (5.3-23b)

= ( ) ( )
=

0 658 0 632 55

27 6

0 552. .

.

. ksi

ksi

P F An cr g   

       ksi in.

       kips

=

= ( )
=

27 6 5 05

139

2. .
 

(5.3-6, Spec. Eq. E7-1)
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Calculate the out-of-plane strength ratio for the lower unbraced length

LRFD ASD

P

P

P

P
r

c

r

c n

=
φ

= ( )
11 3

0 90 139

.

.

kips

kips

= 0 0903.

P

P

P

P
r

c

c r

n

=
Ω

=
( )1 67 7 50

139

. . kips

kips

= 0.0901

C. Out-of-Plane Flexural Buckling Strength—Upper Unbraced Length

 Calculate the out-of-plane elastic buckling strength, Pey, using properties at the middle of the 54-in. upper unbraced length.

 At bottom end, web height = 19.5 in.
 At top end, web height = 24.0 in.
 At mid-length, web height = 21.8 in.

Iy =
( )( )

+
( )

=

2 0 250 6 00

12

21 8

12

9 00

3 3
. . .

.

in. in. in. 0.125in.

   in.44

P
EI

KL
ey

y

b

=
( )

=
( )

π

π

2

2

2

2

29 000 9 00

1 0 54 0

in.

 in.)]

4, .

[ . ( .

== 883 kips

 Calculate Fn1, the nominal buckling stress without consideration of slender elements

  By inspection, under a constant axial force, the location with largest ratio of fr /Fy is the bottom end of the upper unbraced 
length.

 From Table 5-1, Ag = 5.44 in.2 at the bottom end of the upper unbraced length.

F
P

A
e

ey

g

=

=

=

   
kips

5.44 in.

   ksi

2

883

162

F

F

y

e

=

= <

55

162

0 340 2 25

ksi

ksi

     therefore  use Equation 5. . ; , ..3-2 b0

F Fn

F

F
y

y

e
1 0 658=

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

.

 

(5.3-20b)

= ( )0 658 550 340. . ksi 

= 47.7 ksi
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Determine γn1 at the bottom end of the upper unbraced length.

LRFD ASD

= 22.9

frmax = 2.08 ksi ( from previous 
calculation)

γn
n

r

F

f
1

1=
max

= 47 7

2 08

.

.

ksi

ksi
= 34.6

frmax = 1.38 ksi ( from previous 
calculation)

γn
n

r

F

f
1

1=
max

= 47 7

1 38

.

.

ksi

ksi

Locate critical section and calculate slenderness reduction factor, Q

Calculate 
f

QF
r

y

 at the bottom end of the upper unbraced length.

Check fl ange slenderness.
From calculations for the top of the lower unbraced length, 

 Qs = 0 841.

Check web slenderness.
From in-plane calculations above, the web is slender.

 f fr rmax=

LRFD ASD

f fn r= γ 1

= ( )22 9 2 08. .  ksi

= 47 6.  ksi

f fn r= γ 1

= ( )34 6 1 38. .  ksi

= 47 7.  ksi

Note that the difference in f between LRFD and ASD is due to rounding. Use ASD value: f = 47.7 ksi.

b t
E

f

E

f
be = −

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

≤1 92 1
0 34

.
.

( )b/t
 (Spec. Eq. E7-17)

= ( ) −1 92 0 125
29 000

47 7
1

0 34

156

29 000

47 7
. .

,

.

. ,

.
in.

 ksi

ksi

 ksi

ksi

⎡⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= <5 60 19 5. .in. in.

From AISC Specifi cation Section E7.2,

Aeff = 2 0.25 in. in. in. 0.125in.

     3.70 in.2

( )( ) + ( )
=

6 00 5 60. .

Q
A

A
a

eff

g

=

=

= 3.70 in.

5.44 in.

0.680

2

2

From AISC Specifi cation Section E7,

Q Q Qs a=

= ( )
=

0 841 0 680

0 572

. .

.

 (Spec. Eq. E7-16)
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LRFD ASD

f

QF
r

y

= ( )
2.08 ksi

ksi0 572 55.

= 0 0661.

f

QF
r

y

= ( )
1.38 ksi

ksi0 572 55.

= 0 0439.

Calculate 
f

QF
r

y

 at the top end of the upper unbraced length.

 Ag = 6.00 in.2

From calculations at the bottom end of the upper unbraced length, kc is limited to a minimum of 0.35 and Qs = 0 841. .
Check web slenderness.

λ =

=

=

h

tw

  
in.

0.125in.

  

24 0

192

.

 λr = <34 2 192. ; therefore, the web is slender and the reduction factor, Q, is determined from AISC Specifi cation Section E7 
as follows:

Q Q Qs a=
where

Q
A

A
a

eff

g

=

Ag = 6.00 in.2

 Aeff = 2Af + betw

b t
E

f

E

f
be = −

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

≤1 92 1
0 34

.
.

( )b/t
 

(Spec. Eq. E7-17)

where the stress, f, is:

LRFD ASD

fr = 1.88 ksi (as determined previously)

f fn r= γ 1

= ( )22 9 1 88. . ksi
= 43 1. ksi

fr = 1.25 ksi (as determined previously)

f fn r= γ 1

= ( )34 6 1 25. . ksi

= 43 3. ksi

Note that the difference in f between LRFD and ASD is due to rounding. Use ASD value: f = 43.3 ksi.

b t
E

f

E

f
be = −

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

≤1 92 1
0 34

.
.

( )b/t
 (Spec. Eq. E7-17)

= ( ) −1 92 0 125
29 000

43 3
1

0 34

192

29 000

43 3
. .

,

.

. ,

.
in.

 ksi

ksi

 ksi

ksi

⎡⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= <5 93 24 0. . .in in.
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From AISC Specifi cation Section E7.2,

Aeff  = 2Af + betw

= 2  in. in. in. 0.125in.

3.74 in.2

4( )( ) + ( )
=

6 00 5 93. .

Q
A

A
a

eff

g

=

=

     = 3.74 in.

6.00 in.

    0.623

2

2

Q Q Qs a=

= ( )
=

0 841 0 623

0 524

. .

.

 

Calculate fr /QFy:

LRFD ASD

f

QF
r

y

= ( )
1.88 ksi

ksi0 524 55.

= 0 0652.

f

QF
r

y

= ( )
1.25ksi

ksi0 524 55.

= 0 0434.

The bottom of upper unbraced length is the critical location, because 
f

QF
r

y

 is the largest at that point.

Calculate the nominal buckling strength at the critical location

As determined for the bottom end of the upper unbraced length, Q = 0.572 and Fe = 162 ksi.

QF

F

y

e

=
( )

= <

0 572 55

162

0 194 2 25

.

. .

ksi

ksi

       ; therefore, use  Equation 5.3-23b for the calculation of the nominal buckling strength

F QFcr

QF

F
y

y

e=
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

0 658.

= ( ) ( )
=

0 658 0 572 55

29 0

0 194. .

.

. ksi

ksi

P F An cr g=

= ( )
=

   ksi in.

   kips

29 0 5 44

158

2. .

 (5.3-23b)

 (5.3-6, Spec. Eq. E7-1)

(Spec. Eq. E7-16)
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Calculate the out-of-plane strength ratio for the upper unbraced length

LRFD ASD

P

P

P

P
r

c

r

c n

=
φ

= ( )
11 3

0 90 158

.

.

kips

kips

= 0 0795. = 0.0793

P

P

P

P
r

c

c r

n

=
Ω

=
( )1 67 7 50

158

. . kips

kips

Column Strength

 For the condition of pure axial compression, the column strength is the lowest strength calculated for the limit states of in-
plane buckling of the whole column, out-of-plane buckling of the lower unbraced length, and out-of-plane buckling of the 
upper unbraced length. These are summarized below.

Summary of Axial Strengths

In-Plane Flexural Buckling

LRFD ASD

P

P

P

P
r

c

r

c n

=
φ

= ( )
11 3

0 90 168

.

.

kips

kips

= 0 0747. = 0 0746.

P

P

P

P
r

c

c r

n

=
Ω

=
( )1 67 7 50

168

. . kips

kips

Out-of-Plane Flexural Buckling—Lower Unbraced Length

LRFD ASD

P

P
r

c

= ( )
11 3

0 90 139

.

.

kips

kips

= 0 0903. = 0 0901.

P

P
r

c

=
( )1 67 7 50

139

. . kips

kips

Out-of-Plane Flexural Buckling—Upper Unbraced Length

LRFD ASD

P

P
r

c

= ( )
11 3

0 90 158

.

.

kips

kips

= 0 0795.

P

P
r

c

=
( )1 67 7 50

158

. . kips

kips
= 0 0793.

Out-of-plane fl exural buckling of the lower unbraced length governs the strength of the column.

The available strengths are calculated as:

LRFD ASD

φc nP = ( )
=

0 90 139

125 kips

. kips Pn

cΩ
=

=

139

83 2

kips

1.67

kips.

 

031-138_DG25_Ch5.indd   57 6/21/11   1:46 PM



58 / FRAME DESIGN USING WEB-TAPERED MEMBERS / AISC DESIGN GUIDE 25

2007) equation, rather than the AISC Specifi cation equation 
written in terms of fl ange fl exural stresses. For most cases, 
the two equations give very similar results. In cases where 
they differ signifi cantly, the AASHTO equation generally 
gives more accurate results for members with multiple brace 
points along their length (Kim and White, 2007a; White, 
2010). The AISC (2005) Cb equation tends to be more con-
servative than the AASHTO (2004, 2007) equation. This is 
particularly the case for reverse-curvature bending of mem-
bers with singly symmetric cross sections. 

Because of the continuously changing cross-section ge-
ometry, it is generally necessary to check the applicable limit 
states at various locations along the length of the beam. In 
the absence of a more sophisticated strategy for fi nding the 
critical locations, it is suggested that checks be made at the 
middle and ends of the unbraced length, at any taper change 
or plate change, and at locations of maximum fl exural stress 
for each of the applicable limit states.

 5.4.1 Common Parameters

Cb, Lateral-Torsional Buckling Modifi cation Factor

The lateral-torsional buckling modifi cation factor, Cb, is 
calculated individually for each fl ange in an unbraced length 
using fl exural stresses computed from that fl ange rather than 
moments (see Figure 5-4 for defi nitions of variables used in 
the determination of Cb). This term is used to modify the elas-
tic lateral-torsional buckling stress equation to account for 
the favorable effect of moment gradient along an unbraced 
length. Several example calculations using the AASHTO 
(2004, 2007) procedure are illustrated in Figure 5-5. 

Calculate Cb as:

For 
f

f
fmid

2
21 0≥ =, or  ,or cantilevers,

 Cb = 1 0.  

otherwise,

 C
f

f

f

f
b = − +

⎛

⎝
⎜

⎞

⎠
⎟ ≤1 75 1 05 0 3 2 31

2

1

2

2

. . . .  (5.4-1)

where

f2 =  the absolute value of the largest compressive 
fl exural stress at either end of the unbraced 

 5.4 FLEXURE

Engineers accustomed to the 1989 AISC Specifi cation 
(AISC, 1989) will fi nd the AISC Specifi cation fl exural provi-
sions to be substantially different. In addition to the overall 
change in format from stress to moment, the fundamental 
lateral-torsional buckling equations have been simplifi ed as 
has the treatment of webs with slendernesses in the range 
between the compact and noncompact limits.

Tapered beams are subject to the same limit states as pris-
matic members, that is, the strength is the lowest of that de-
termined for any of the following applicable limit states:

1. Compression fl ange yielding

2. Lateral-torsional buckling

3. Compression fl ange local buckling

4. Tension fl ange yielding

5. Tension fl ange rupture

Sections F2 to F5 of the AISC Specifi cation have been orga-
nized for the maximum convenience of users of hot-rolled 
shapes. In each of these sections, the nominal strength equa-
tions for a given limit state (e.g., lateral-torsional buckling) 
are simplifi ed from a more general form by removing terms 
not needed for the type of member addressed. In contrast, the 
following procedure combines slightly modifi ed provisions 
of Sections F2, F3, F4 and F5 to produce a single procedure 
that is algebraically equivalent to the individual procedures 
for cases with uniform bending stresses across an unbraced 
length. Any combination of compact, noncompact, and slen-
der fl ange and web elements can be handled. For nontapered 
members, the results of the procedure converge to those of 
the applicable section in Chapter F with the exception of 
the handling of Cb for members with nonuniform fl exural 
stresses across the unbraced length and the defi nition of Lp 

for compact I-shaped members. The equations presented in 
this guide are more convenient when dealing routinely with 
a mix of fl ange and web slenderness.

The principal difference between the procedures for pris-
matic and tapered beams is in the calculation of lateral-tor-
sional buckling strength. To properly account for the effect 
of taper on the stress gradient in the compression fl ange, Cb 
is calculated using fl exural stresses rather than moments, per 
the method proposed by Yura and Helwig (1996). Based on 
the research by Kim and White (2007a), it is also recom-
mended that Cb be calculated using the AASHTO (2004, 

Fig. 5-4. Defi nition of Cb stresses.

031-138_DG25_Ch5.indd   58 6/21/11   1:46 PM



AISC DESIGN GUIDE 25 / FRAME DESIGN USING WEB-TAPERED MEMBERS / 59

length of the fl ange under consideration. If the 
stress is zero or is tensile at both ends of the 
fl ange, f2 is taken as zero.

 fmid  =  fl exural stress in the fl ange under consideration 
at the middle of the unbraced length, taken as 
positive for compression and negative for tension

 f0  =  fl exural stress in the fl ange under consideration 
at the opposite end of the unbraced length from 
f2, taken as positive for compression and negative 
for tension 

For f
f f

f fmid <
+

=0 2
1 0

2
,

For f
f f

f f f fmid mid≥
+

= − ≥0 2
1 2 0

2
2,  (5.4-2)

For doubly symmetric members under combined tension and 
fl exure, Section H1.2 of the AISC Specifi cation permits Cb 

to be multiplied by

 1+
P

P
u

ey
 for LRFD or 1

1 5
+

. P

P
a

ey
 for ASD 

where  

Pa =  required axial tensile strength using ASD load 
combinations, kips

 
Pey 

EI

L

y

b

=
π2

2
, ksi (5.4-3)

Pu =  required axial tensile strength using LRFD load 
combinations, kips

However, this increase in strength has not been demonstrat-
ed for the general case of tapered members and is thus not 
recommended for use in their design. 

In the general approach presented next, which is appli-
cable for all members within the scope of this document, Cb 
is used as a scale factor on the elastic buckling stress, Fe.LTB, 
rather than as a multiplier on the nominal moment, Mn, as in 
the AISC Specifi cation. For elastic lateral-torsional buckling 
(LTB), this is equivalent to the AISC Specifi cation approach 
of always scaling the nominal moment, Mn, directly. Howev-
er, for inelastic LTB, it is equivalent to the approach in AISC 
(1989) Equation F1-6. The general approach is somewhat 
conservative relative to the AISC Specifi cation for inelastic 
LTB of prismatic members with Cb > 1.0. 

Fig. 5-5. Sample Cb calculations, adapted from AASHTO (2007) Article C6.4.10.
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λ λpw

c

p y

p

y

rw

h

h

E

F

M

M

 =

−
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

≤

0 54 0 09

2

. .
min

  for singly symmetric 
sections

 (from Spec. Table B4.1)

λrw yE/F = 5 70.  (from Spec. Table B4.1) 

In the denominator of the equation for the compact web 
slenderness limit, λpw, for singly symmetric sections from 
the AISC Specifi cation Table B4.1, Mymin has been substi-
tuted for My as shown in the AISC Specifi cation to clarify 
the intent.

The recommendation to take Rpc as 1.0 when Iyc/Iy ≤ 0.23 
is an extension of the AISC Specifi cation based on White 
and Jung (2006), who show that a compression fl ange with a 
very small Iy leads to large web distortions and correspond-
ing strength reductions, even for noncompact webs.

Rpg, Web Bend Buckling Factor

Rpg is the bending strength reduction factor for cross sections 
with slender webs. This term reduces the nominal fl exural 
strength to account for the unfavorable effect of web bend 
buckling and the subsequent post-buckling behavior involv-
ing load shedding, to the fl anges. This strength reduction is 
the result of local buckling of the web in the compression 
region.

The value of Rpg is 1.0 for sections with compact or non-
compact webs and less than 1.0 for sections with slender 
webs. Using the section properties at the cross section under 
consideration, calculate Rpg as:

For 
h

t
c

w
rw≤ λ ,

Rpg = 1 0.

For 
h

t
c

w
rw> λ ,

 

R
a

a

h

t

E

F
pg

w

w

c

w y

= −
+

−
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ ≤1

1 200 300
5 7 1 0

,
. .

 

 (5.4-6, Spec. Eq. F5-6)

where

λrw yE F= 5 70. /  (Spec. Table B4.1)

a
h t

b t
w

c w

fc fc

= ≤ 10 0.  (5.4-7, Spec. Eq. F4-11)

Although it involves additional calculations, Equation 5.4-6 
can be modifi ed to increase Rpg in cases where the web 
fl exural stresses are limited by compression fl ange local 

For linearly tapered members with no steps in the geome-
try of the fl anges along the unbraced length, the AISC Speci-
fi cation approach of multiplying Mn(Cb =1) by Cb can be ap-
plied. However, for general cases such as unbraced lengths 
with steps in the fl ange geometry and/or multiple web tapers, 
justifi cation of the more liberal AISC Specifi cation approach 
is diffi cult. This is because extensive yielding may occur 
within the span and the appropriateness of the Specifi ca-
tion characterization of the inelastic LTB resistance in these 
types of members has not been studied extensively. At the 
limit where the compression fl ange fl exural stress is close to 
uniform and Cb ≈ 1.0, both of the preceding approaches give 
the same result.

Rpc, Web Plastifi cation Factor—Compression

Rpc is the effective cross-section plastic shape factor, limited 
by compression, for cross sections with compact or noncom-
pact webs. This term is used to adjust the fl exural strength 
to account for the favorable effect of web plastifi cation in 
cross sections with nonslender web elements. The value 
of Rpc ranges from 1.0 for sections with slender webs to 
Mp/Myc for compact shapes. Using the section properties at 
the cross section under consideration, calculate Rpc as:

For 
h

t
c

w
pw≤ λ ,

 R
M

M
pc

p

yc

=  (5.4-4, Spec. Eq. F4-9a)

For λ λrw
c

w
pw

h

t
> > ,

 R
M

M

M

M

M

M
pc

p

yc

p

yc

pw

rw pw

p

y

= − −
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

−
−

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

≤1
λ λ

λ λ c

 

 (5.4-5, Spec. Eq. F4-9b)

For ≥ ≤
h

t

I

I
c

w
rw

yc

y

λ or 0 23. ,

 R
M

M
pc

p

yc

= ≤1 0.  

where
FM Z F Sp y x y xc = ≤ 1 6.
F SMyc y xc=

hc =  twice the distance from the cross-section centroid 
to the inside face of the compression fl ange, in.

hp =  twice the distance from the plastic neutral axis to 
the inside face of the compression fl ange, in.

λ     = h tc w/

λ pw yE F = 3 76. /  for doubly symmetric sections
 (from Spec. Table B4.1)
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buckling, lateral-torsional buckling, or tension fl ange yield-
ing. Substitute Mn(Rpg =1) /Sxc for Fy in Equation 5.4-6, where 
Mn(Rpg =1) is the nominal moment strength calculated with Rpg 
taken equal to 1.0. This refi nement is incorporated within 
the AASHTO Specifi cations (2004, 2007) and the previous 
AISC ASD (AISC, 1989) and LRFD (AISC, 1999) Specifi -
cations, but was changed in the interest of simplicity for the 
nontapered section covered in the AISC Specifi cation.

 5.4.2 Compression Flange Yielding

Using the parameters defi ned in Section 5.4.1, the nominal 
fl exural resistance based on compression fl ange yielding is 
calculated as:

 
M R R M

R R F S

n pc pg yc

pc pg y xc

=

=     
 (5.4-8)

For sections with compact webs, Equation 5.4-8 reduces to:

 
M M

F Z

n p

y x

=

=     
 (5.4-9, Spec. Eq. F2-1)

For doubly symmetric sections with noncompact or slender 
webs, Equation 5.4-8 reduces to AISC Equation F4-1 or 
F5-1, as appropriate. Because Rpc always has a value of 1.0 
for sections with slender webs and Rpg always has a value of 
1.0 for compact and noncompact webs, either Rpc or Rpg will 
be equal to 1.0 in all cases, except when the web is exactly 
at the limit between noncompact and slender, in which case 
both are equal to 1.0. The product RpcRpg is usually greater 
than 1.0 for sections with noncompact webs, and it is always 
less than 1.0 for sections with slender webs.

Although identifi ed as a separate limit state in the AISC 
Specifi cation, the compression fl ange yielding limits are 
identical to the upper bounds given for lateral-torsional 
buckling. As a result, a separate check for this limit state 
is redundant if the lateral-torsional buckling upper limit is 
checked.

 5.4.3 Lateral-Torsional Buckling (LTB)

The provisions for lateral-torsional buckling are modifi ed 
versions of the AISC provisions to account for the infl u-
ence of nonprismatic member geometry. The calculations 
describe three regions of behavior. Short unbraced lengths 
are governed by yielding and are not subject to lateral-
torsional buckling. Long unbraced lengths are subject to 
elastic lateral-torsional buckling. Intermediate unbraced 
lengths are subject to inelastic buckling and have strengths 
linearly interpolated between the strengths at the transition 
points to the yielding and elastic LTB regions.

The LTB strength is checked as a single strength ratio for 
the entire unbraced length, in a manner similar to the han-
dling of axial compression buckling. The procedure takes 

into account both the LTB behavior and the behavior repre-
sented by the web bend buckling and plastifi cation factors, 
Rpg and Rpc.

The lateral-torsional buckling limit state must be checked 
for each fl ange having compression somewhere along its 
length. The smaller of the two strength ratios governs.

General Procedure

The following procedure for calculating the lateral-torsional 
buckling strength may be used for all members within the 
scope of this document:

1. Calculate the elastic lateral-torsional buckling stress, 
FeLTB, of the unbraced length using AISC Specifi cation 
Equation F4-5 with the section properties at the middle 
of the unbraced length and with Cb determined using 
Equations 5.4-1 and 5.4-2.

F
C E

L

r

J

S h

L

r
eLTB

b

b

t

xc o

b

t

=
⎛

⎝
⎜

⎞

⎠
⎟

+
⎛

⎝
⎜

⎞

⎠
⎟

π2

2

2

1 0 078.

 (5.4-10, Spec. Eq. F4-5)

 where

  ho = distance between fl ange centroids

  r
b

h

d
a

h

h d

t
fc

o
w

o

=

+
⎛

⎝
⎜

⎞

⎠
⎟12

1
6

2
 (5.4-11, Spec. Eq. F4-10)

 and aw is as defi ned earlier for Rpg, except that the upper 
limit of 10 does not apply.

 If the web is slender h tc w > 5.70)( ⁄ yE/F , or if 
Iyc /Iy ≤ 0.23, 

 take J as zero; otherwise,

 J
ht b t t

b

b t t

b
w ft ft ft

ft

fc fc fc

fc

= + −
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ + −

⎛3 3 3

3 3
1 0 63

3
1 0 63..

⎝⎝
⎜⎜

⎞

⎠
⎟⎟

 (5.4-12)

2. Determine the location of the maximum compressive 
fl exural stress, fr, within the unbraced length. This loca-
tion will often be at or near one of the ends, but it can oc-
cur anywhere along the length. At this location, calculate 
the nominal buckling strength multiplier, γeLTB, as:

  γeLTB = FeLTB/fr (5.4-13)

3. Calculate FL. For most sections, FL is 0.7Fy.
For all members with slender webs and other members 
with Sxt /Sxc ≥ 0.7,
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1. Calculate (FeLTB)
Cb=1

 as above, using Cb = 1.0.

2. Calculate (γeLTB)
Cb=1

 as above, substituting (FeLTB)Cb=1 for 
FeLTB.

3. Calculate FL as above.

4. At various locations along the unbraced length, deter-
mine which of the three lateral-torsional buckling re-
gions applies, and calculate Mn if applicable using the 
buckling strength multiplier, (γeLTB) Cb=1, and the compres-
sion fl ange fl exural stress at that location, fr.

(a) If 
γ πeLTB Cb r

y

f

F

( )
≥=1

2

21 1
8.2

.
= , the lateral-torsional 

buckling limit state does not apply.

(b)  If 8 2 1. >
( )

>=
γeLTB Cb r

y

L

y

f

F

F

F
, calculate the inelastic 

lateral-torsional buckling nominal strength as:

F

R F

F

f

F

F

L

pc y

y

eLTB Cb
r

y

L

−
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

( ) −

× =1 1

1 1
1

π
γ

π

.

−−

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥1 1.

−

M C R R Mn b pg pc yc

≤ R R Mpg pc yc

=

This equation is an accurate approximation of the 
AISC Specifi cation Equations F4-2 and F5-3 and is 
written in terms

 of the stress ratio 
γeLTB r

y

f

F
 (White and Kim, 2006).

(c) If 
γeLTB Cb r

y

L

y

f

F

F

F

( )
≤=1 , calculate the elastic lateral-

torsional buckling nominal strength as:

 For members with slender webs,

 ( )M C R f S R Mn b pg eLTB Cb
r xc pg yc= ≤=γ 1  (5.4-20)

 For other members,

 ( )M C f S R Mn b eLTB Cb
r xc pc yc= ≤=γ 1  (5.4-21)

 5.4.4 Compression Flange Local Buckling (FLB)

In the 1989 AISC Specifi cation (AISC, 1989), strength re-
ductions from local buckling were handled using Q factors 
similar to those used for axial compression. In the AISC 
Specifi cation, a direct solution for the nominal strength is 
provided that does not involve the calculation of Q values. 

  F FL y= 0 7.  (5.4-14, Spec. Eq. F4-6a)

 For members with compact and noncompact webs and 
Sxt xc/ .< 0 7S , 

  F
F S

S
FL

y xt

xc
y= ≥ 0 5.  (5.4-15, Spec. Eq. F4-6b)

4. At various locations along the unbraced length, de-
termine which of the three lateral-torsional buckling 
regions applies, and calculate Mn, if applicable, using the 
buckling strength multiplier, γeLTB, and the compression 
fl ange fl exural stress at that location, fr.

(a) If 
γ πeLTB r

y

f

F
≥ =

2

21 1
8 2

.
.  (the stress ratio correspond-

 ing to Lb = Lp for prismatic members) (White and 
Kim, 2006), the lateral-torsional buckling limit state 
does not apply.

(b) If 8 2. > >
γeLTB r

y

L

y

f

F

F

F
, calculate the inelastic nominal 

lateral-torsional buckling strength as:

M R R M
F

R F

F

f

F

F

n pg pc yc
L

pc y

y
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L
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⎜⎜

⎞

⎠
⎟⎟
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1 1

1 1

1 1

π
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⎜

⎛

⎝

⎜
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⎜
⎜
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⎞

⎠

⎟
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⎟
⎟
⎟

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

≤ R R Mpg pc yc

 This equation takes the place of AISC Specifi cation 
Equations F4-2 and F5-3 and is written in terms of

 the stress ratio 
γeLTB r

y

f

F
 (White and Kim, 2006).

(c) If 
γeLTB r

y

L

y

f

F

F

F
≤ , calculate the elastic lateral-torsional 

buckling nominal strength as:

 For members with slender webs, 
M R f Sn pg eLTB r xc= γ  (5.4-17)

 For other members, M f Sn eLTB r xc= γ  (5.4-18)

5. The largest ratio of Mr /Mn calculated along the unbraced 
length is the lateral-torsional buckling strength ratio for 
the entire unbraced length.

Procedure for Single Linear Tapered Members 
(Flange and Web Plates Remain Constant)

For tapered members with a single linear taper and no 
changes of fl ange or web plates within the unbraced length, 
the following more liberal procedure may be used:

(5.4-16)
(5.4-19)
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The net effect is largely the same. The AISC Specifi cation 
rectifi es a few anomalies in the AISC (1989) equations 
(White and Chang, 2007).

As in the case of lateral-torsional buckling, compression 
fl ange local buckling (FLB) is defi ned over three regions. For 
compact (relatively thick) fl anges, FLB is not a limit state. 
For slender fl anges, the elastic FLB strength is calculated di-
rectly. For intermediate values of width-thickness ratios, an 
inelastic FLB strength is calculated by linear interpolation 
between the strengths at the transition points.

(a) For members with compact fl anges, b tf f2 ≤)( ⁄  
0.38 yE/F , the limit state of FLB does not apply.

(b) For members with noncompact fl anges, yE/F0.38 <
kc L< 0.95b tf f2⁄ E/F , the nominal FLB strength is cal-

culated from AISC Specifi cation Equations F3-1, F4-12 
and F5-8 as:

M Rn pg=

5 0. .

R M R M F S

b

t

E

F

k E

F

E

F

ycpc pc yc L xc

f

f y
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L y

−× −( )
−
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⎛
2
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0 9 38
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⎜
⎜
⎜

⎞

⎠

⎟
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⎟

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

 (5.4-22)

(c) For members with slender fl anges, kc L≥ 0.95b tff 2⁄ E/F , 

the nominal FLB strength is calculated from AISC Spec-

ifi cation Equations F3-2, F4-13 and F5-9 as:

 

M
R Ek S

b

t

n
pg c xc

f

f

=
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

0 9

2

2

.

 (5.4-23)

 where

 
k

h

t

kc

w

c= ≤ ≤4
0 35 0 76; . .

 
(5.4-24)

 5.4.5 Tension Flange Yielding (TFY)

Members with unequal fl anges are subject to the limit state 
of tension fl ange yielding (TFY).

For members with S Sxt xc≥ , the limit state of TFY does 
not apply.

For members with S Sxt xc< , the nominal TFY strength is 
calculated as:

 M R F Sn pt y xt=  (5.4-25, from Spec. Eq. F4-14)

For 
h

t
c

w
pw≤ λ ,

R
M

M
pt

p

yt

=

 (5.4-26, Spec. Eq. F4-15a)

For λ λpw
c

w
rw

h

t
< ≤ ,

 R
M

M

M

M

M

M
pt

p

yt

p
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pw

rw pw

p

y

= − −
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⎝
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⎞

⎠
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−
−
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⎠
⎟⎟

⎡

⎣
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⎤

⎦
⎥
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≤1
λ λ

λ λ t

 (5.4-27, Spec. Eq. F4-15b)

For 
h

t

I

I
c

w
rw

yc

y

> ≤λ or 0 23. ,

  R
M

M
pt

p

yt

= ≤1 0.

where
 M F Z F Sp y x y xt = ≤ 1 6.  (5.4-28)

 M F Syt y xt=  (5.4-29)

 Sxt   =  the gross section modulus to the extreme fi ber of 
the tension fl ange

and all other terms are as defi ned for Rpc previously.

The recommendation to take Rpt as 1.0 when 
I

I

yc

y

≤ 0 23.  is 

an extension of the AISC Specifi cation based on White and 
Jung (2006), who show that a compression fl ange with a 
very small Iy leads to large web distortions, even for non-
compact webs.

 5.4.6 Tension Flange Rupture

Members with holes in the tension fl ange are subject to the 
limit state of tension fl ange rupture. This provision is found 
in AISC Specifi cation Section F13.1.

For members with F A Y F Au fn t y fg≥ , the limit state of tension 
fl ange rupture does not apply.

For members with F A Y F Au fn t y fg< , the nominal fl exural 
strength of the cross section at the location of a hole or line 
of holes is calculated as:

 M
F A

A
Sn

u fn

fg
xt=  (5.4-30)

where
 Afg = gross area of tension fl ange, in.2

031-138_DG25_Ch5.indd   63 6/21/11   1:46 PM



64 / FRAME DESIGN USING WEB-TAPERED MEMBERS / AISC DESIGN GUIDE 25

 Example 5.3—Doubly Symmetric Section Tapered Beam

Given:

Evaluate the fl exural strength of the member from Example 5.2 with the required fl exural strength shown in Figure 5-6. All 
required second-order effects are included in the moment diagram.

Material Properties
Fy = 55 ksi
Fu = 70 ksi

Geometric Properties
Left fl ange = PL 4≠≠≠ × ^
Right fl ange = PL 4≠≠≠ × ^
Web thickness = 0.125 in.
Two n-in.-diameter bolt holes in both fl anges at brace points

By inspection, the member is subject to the following limit states:

• Compression fl ange yielding

• Lateral-torsional buckling

• Compression fl ange local buckling

• Tension fl ange rupture at the bolt holes

The tension fl ange yielding limit state need not be checked because the cross section is doubly symmetric. The upper bound of 
the lateral-torsional buckling strength is equal to the compression fl ange yielding strength; thus, a separate check for compression 
fl ange yielding is not required unless the section is not subject to lateral-torsional buckling.

 Afn = net area of tension fl ange 
 = − +A t dfg f h( )∑ z 2in. , in.

 Sxt =  section modulus to the extreme fi ber of the tension 
fl ange, in.3

 Y F /Ft y u for = 1 0 ≤ 0.8.
 = 1 1.  otherwise
 dh = diameter of hole, in.

Equation 5.4-30 is similar to AISC Specifi cation Equation 
F13-1 with Sx equal to Sxt.

 5.4.7 Strength Ratio

Calculate the strength ratio for the controlling limit state 
using the required strength, Mr, and the nominal fl exural 
strength, Mn, determined earlier as:

 
M

M

M

M
r

c

b a

n

=
Ω

 (ASD) (5.4-31)

 
M

M

M

M
r

c

u

b n

=
φ

 (LRFD) (5.4-32)

 φb b= =0 90 1 67. .(LRFD) (ASD)Ω
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Fig. 5-6. Flexural member.

Solution:

Table 5-2. Section Properties and Strengths

Locations Property
Lower 

Unbraced 
Length

Upper 
Unbraced 

Length

Top
(C-E)

h
Sx

My

19.5 in.
37.0 in.3

2,040 kip-in.

24.0 in.
47.8 in.3

2,630 kip-in.

Mid-
Length
(B-D)

h
Sx

My

Mp

15.8 in
28.7 in.3

1,580 kip-in.
1,750 kip-in.

21.8 in.
42.4 in.3

2,330 kip-in.
—

Bottom
(A-C)

h
Sx

My

12.0 in.
—
—

19.5 in.
37.0 in.3

2,040 kip-in.
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Web slenderness limits

From AISC Specifi cation Table B4.1, for fl exure in webs of doubly symmetric I-shaped sections,

 

λ pw
y

E

F
=

=

=

3 76

3 76
29 000

55

86 3

.

.
,

.

     
ksi

ksi

      compact web llimit

 

λrw
y

E

F
=

=

=

5 70

5 70
29 000

55

131

.

.
,

     
ksi

ksi

      slender web limit

Flange slenderness limits

From AISC Specifi cation Table B4.1, for fl exure in fl anges of doubly symmetric I-shaped built-up sections,

 

λ pf
y

E

F
=

=

=

0 38

0 38
29 000

8 73

.

.
,

.

     
ksi

55ksi

      compact flange limit

 
λrf

c

L

k E

F
= 0 95.   slender fl ange limit (varies depending upon web height)

 

Lower unbraced length, Lb = 90.0 in.

Check web slenderness at the middle and top of the 90-in. unbraced length. This check is not needed at the bottom because 
Mr = 0.

 

h

t
c

w mid length

⎛

⎝
⎜

⎞

⎠
⎟ =

=
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.

.
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                     131<
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t
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⎛

⎝
⎜

⎞

⎠
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=

      
in.

in.

                   

19 5

0 125

156

.

.

>> 131 

Therefore, the web is noncompact at the mid-length, but slender at the top of the unbraced length.

The values of the web plastifi cation factor, Rpc, and the web buckling factor, Rpg, are required to calculate the nominal fl exural 
strength. At mid-length, the web is noncompact (λpw < hc /tw ≤ λrw); therefore, from AISC Specifi cation Section F4 and Section 
5.4 of this Design Guide, and using values from Table 5-2,
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λ λ

λ λ c

  (5.4-5, Spec. Eq. F4-9b)
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,
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1126 86 3

131 86 3
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−
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⎞
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⎡

⎣
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⎤

⎦
⎥ ≤.

.

,

,

kip-in.

kip-in.

 = 1.01 < 1.11; therefore use Rpc = 1.01
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 Rpg = 1.0 because the web is noncompact at this location

At the top of the 90-in. unbraced length, the web is slender; therefore, according to Section 5.4.1 of this Design Guide,
 Rpc  = 1.0

 

a
h t

b t
w

c w

fc fc

=

=
( )
( )

=

   
in. 0.125in.

6.00 in. 0.250 in.

   

19 5

1 6

.

. 33 10 0 1 63≤ =. . therefore use aw

 R
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F
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= −
+

−
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ ≤1

1 200 300
5 7 1 0

,
. .   (5.4-6, Spec. Eq. F5-6)
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+ ( ) −

⎛

⎝
⎜1

1 63
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.

, .

.

.
.

,in.
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ksi⎜⎜
⎞

⎠
⎟⎟

= 0 976.

Lateral-Torsional Buckling—Lower Unbraced Length 

Using the provisions for single linear tapered members with no plate changes, determine the nominal fl exural strength, Mn, for 
the limit state of lateral-torsional buckling in the lower unbraced segment.

First, using AISC Specifi cation Section F4 and Section 5.4 of this Design Guide, determine the elastic lateral-torsional buckling 
stress, FeLTB, with Cb = 1 for the location of maximum fl exural stress using properties at the middle of the lower unbraced length. 
The elastic lateral-torsional buckling stress is,

 F
E

L

r

J

S h

L

r
eLTB Cb

b

t
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=
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⎝
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⎠
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2
1 0

1 0 078
.

.
π

  (5.4-10, Spec. Eq. F4-5)

where
8 2ho = + ( )

=

15

16 1

.

.

in. in./2 
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4

h hc =
= in.15 8.

a
h t

b t
w

c w

fc fc

=

=
( )

=

   
in. 0.125 in.

6.00 in.

   

15 8

1 32

.

.

(4 in.)   (5.4-7, Spec. Eq. F4-11)
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  (5.4-11, Spec. Eq. F4-10)

=

+ ( ) ( )
(

6 00

12
16 1
16 3

1
6

1 32
15 8

16 1 16 3
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.

.

.
.

.

. .

in.

in.
in.

in.

in. in.))
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= 1 58. in.

Sxc = Sx = 28.7 in.3 from Table 5-2
J = 0, because the web is slender over some portion of this unbraced length.

(5.4-7, Spec. Eq. F4-11)
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Therefore,
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  (5.4-10, Spec. Eq. F4-5)
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Find the location of maximum fl exural stress.

For the case of a linear web taper and a linear moment taper to zero at the small end (small P-δ effects), the maximum fl exural 
stress will always occur at the deep end.

LRFD ASD

f frmax = 2

 = 30.3 ksi

f frmax = 2

 = 20.3 ksi

Calculate the elastic buckling multiplier with Cb = 1, γeLTB Cb
( ) = 1

.

LRFD ASD

( )
( )

γeLTB

eLTB C

rmax

b
F

f
=

=1

Cb = 1

 
= 88.2 ksi

30.3 ksi

 = 2.91

( )
( )

γeLTB

eLTB C

rmax

b
F

f
=

=1

Cb = 1

 
=  

88.2 ksi 

20.3 ksi
 = 4.34

Calculate the nominal fl exural strength due to lateral-torsional buckling at the top of the lower unbraced length. Select the equa-
tion for calculation of the nominal fl exural strength, Mn, based on the following ratio:

LRFD ASD

( )γeLTB C r

y

b
f

F
=

( )=1 2 91 30 3

55

. . ksi

ksi

 = 1.60

( )γeLTB C r

y

b
f

F
=

( )=1 4 34 20 3

55

. . ksi

ksi

 = 1.60

When Sxt /Sxc ≥ 0.7,

 F FL y= 0 7.  (5.4-14, Spec. Eq. F4-6a )

and therefore,

 

F

F
L

y

= 0 7.
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Because 8 2. >
( )

>
γeLTB r

y

L

y

f

F

F

F
Cb = 1

, use Equation 5.4-19 to calculate Mn:

 M C R R M
F

R F

F

f

F

F

n b pg pc yc
L
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y

eLTB Cb r

y

L

= − −
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( ) −
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1 1
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π
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π
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⎜
⎜
⎜
⎜
⎜
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⎟
⎟
⎟
⎟
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⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

≤

1 1.

R R Mpg pc yc (5.4-19)

where Cb for the lower unbraced length is determined using Section 5.4.1, the moment diagram in Figure 5-6, and the properties 
in Table 5-2, as follows:

LRFD ASD

 f0 0  ksi=

 
f

M

S
mid

r

xc

=

 
=

 

560

28 7 3

kip-in.

in..

 = 19.5 ksi

f
M

S
r

xc
2 =

 
=

 

1 120

37 0 3

,

.

kip-in.

in.

 = 30.3 ksi

Because 19 5
0 30 3

2
.

.
ksi

ksi ksi> +

 f f f fmid1 2 02 = − ≥  (5.4-2)

 = ( ) −2 19 5 30 3. .ksi ksi

 = 8.70 ksi

 C
f

f

f

f
b = − +

⎛

⎝
⎜

⎞

⎠
⎟ ≤1 75 1 05 0 3 2 31

2

1

2
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. . . .  (5.4-1)
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⎛

⎝
⎜

⎞

⎠
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⎛

⎝
⎜

⎞

⎠
⎟1 75 1 05
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30 3
0 3
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30 3
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. .
.

.
.

.

.
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ksi

ksi

ksi

 = <1 47 2 3. .

 f0 0  ksi=

f
M

S
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r

xc

=

 
=

 

375

28 7 3

kip-in.

in..

 = 13.1 ksi

 
f

M

S
r

xc
2 =

 
=

 

750

37 0 3

kip-in.

in..

 = 20.3 ksi

Because 13 1
0 20 3

2
.

.
ksi

ksi ksi> +

 f f f fmid1 2 02= − ≥  (5.4-2)

 = ( ) −2 13 1 20 3. .ksi ksi

 = 5.90 ksi

 C
f

f

f

f
b = − +

⎛

⎝
⎜
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⎠
⎟ ≤1 75 1 05 0 3 2 31
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. . . .  (5.4-1)
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⎛
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. .
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.
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.

ksi
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 = <1 47 2 3. .

Therefore,
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⎥
⎥
⎥
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≤

1 1.

R R Mpg pc yc
Cb = 1  (5.4-19)

 

= ( )( )( ) − −⎛
⎝⎜

⎞
⎠⎟

−
1 47 0 976 1 0 2 040 1 1

0 7

1 0

1
1 60

1 1
. . . ,

.

.
.

.
kip-in.

π

π 11
0 7

1 1

0 976 1 0 2 040

.
.

. . ,

−

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

≤ ( )( )kip-in.

 = 2,470 kip-in. > 1,990 kip-in.; therefore, use Mn = 1,990 kip-in.
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Check strength ratio.

LRFD ASD

 

M

M

M

M
r

c

r

b n

=
φ

= ( )
1 120

0 90 1 990

,

. ,

kip-in.

kip-in.

 = 0.625

 

M

M

M

M
r

c

b r

n

=
Ω

=
( )1 67 750

1 990

.

,

kip-in.

kip-in.

 = 0.629

Check lateral-torsional buckling strength at the middle of the lower unbraced length. The fl exural stress at this location is,

LRFD ASD

 
f

M

S
r

r

xc

=

=
 

560

28 7 3

kip-in.

in..

 = 19.5 ksi

 
f

M

S
r

r

xc

=

=
 

375

28 7 3

kip-in.

in..

 = 13.1 ksi

Select equation for calculation of nominal moment, Mn, based on the following ratio:

LRFD ASD

γeLTB r

y

f

F

( )
=

( )2 91 19 5

55

. . ksi

ksi
Cb = 1

 = 1.03

γeLTB r

y

f

F

( )
=

( )4 34 13 1

55

. . ksi

ksi
Cb = 1

 = 1.03

Because 8 2. >
( )

>
γeLTB r

y

L

y

f

F

F

F

Cb = 1
, use Equation 5.4-19.
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≤
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= ( )( )( ) − −⎛
⎝⎜

⎞
⎠⎟

−
1 47 1 0 1 01 1 580 1 1

0 7

1 01

1
1 03

1 1
. . . ,

.

.
.

.
kip-in.

π

π 11
0 7

1 1

1 0 1 01 1 580

.
.

. . ,

−
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⎝

⎜
⎜
⎜
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⎢
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⎢

⎤

⎦

⎥
⎥
⎥
⎥

≤ ( )( )kip-in.

 = 1,800 kip-in. M 1,600 kip-in.; therefore use Mn = 1,600 kip-in.

Check strength ratio.

LRFD ASD

 

M

M

M

M
r

c

r

b n

=
φ

= ( )
560

0 90 1 600

kip-in

kip-in.. ,

 = 0.389

 

M

M

M

M
r

c

b r

n

=
Ω

=
( )1 67 375

1 600

.

,

kip-in.

kip-in.

 = 0.391

The top end (larger end) of the lower unbraced length controls the available fl exural strength using the limit state of lateral-
torsional buckling.
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Compression Flange Local Buckling—Lower Unbraced Length

Determine the nominal fl exural strength, Mn, for the limit state of compression fl ange local buckling at the top of the lower 
unbraced segment.

The equation used for Mn depends on the compactness of the fl ange. Compare the width-thickness ratio of the fl ange at the top 
of the lower unbraced length to the limiting width-thickness ratio from AISC Specifi cation Table B4.1, for fl exure in fl anges of 
doubly symmetric I-shaped built-up sections:

 

b

t

f

f2

6 00

12 0

= ( )
=

.

.

in.

2 4 in.

 λ pf = 8 73.  (calculated previously)

 
λrf

c

L

k E

F
= 0 95.
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k
h

t

c

w

=

=

= <

4

4

19 5
0 125

0 320 0 35 0

   
in.
in.

   therefore use 

.
.

. . ; .335

 FL = 0.7Fy  (5.4-14, Spec. Eq. F4-6a)

 = 0.7(55 ksi)
 = 38.5 ksi

Therefore,
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k E

F
=

=
( )

=
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0 95
0 35 29 000
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15 4

.

.
. ,

.

.

    
ksi

ksi

        sllender flange limit  

Because 8.73 < 12.0 < 15.4, the compression fl ange is noncompact; therefore, use Equation 5.4-22. The nominal fl exural strength 
at the top of the lower unbraced length is,

 M R R M R M F S
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 (5.4-22)

 
Mn = ( ) − ( ) −0 976 1 0 2 030 1 0 2 030 38 5 37 0. . , . , . .kip-in. kip-in. ksi in.33( )⎡⎣ ⎤⎦

−
−

⎛
⎝⎜

⎞
⎠⎟

⎧
⎨
⎩

⎫
⎬
⎭

12 0 8 73

15 4 8 73

. .

. .

 = 1,690 kip-in.

Determine the nominal fl exural strength, Mn, for the limit state of compression fl ange local buckling at the middle of the lower 
unbraced length. Compare the width-thickness ratio of the fl ange at the middle of the lower unbraced length to the limiting 
width-thickness ratio from AISC Specifi cation Table B4.1, for fl exure in fl anges of doubly symmetric I-shaped built-up sections:

 (5.4-24)
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k
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  (5.4-24)

Because 0.35 < kc < 0.76, use kc = 0.356

FL = 38.5 ksi (calculated previously)

Therefore,

 
λrf

c

L

k E

F
= 0 95.

 

=
( )

=

0 95
0 356 29 000

38 5
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.
. ,

.

.
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   slender flange limit

Because 8.73 < 12.0 < 15.6, the compression fl ange is noncompact; therefore, use Equation 5.4-22. The nominal fl exural strength 
for the limit state of compression fl ange local buckling at the middle of the lower unbraced length is,
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Mn = ( ) − ( ) −1 0 1 01 1 580 1 01 1 580 38 5 28 7. . , . , . .kip-in. kip-in. ksi in.33( )⎡⎣ ⎤⎦

−
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⎛
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⎠⎟

⎧
⎨
⎩

⎫
⎬
⎭

12 0 8 73

15 6 8 73

. .

. .

 = 1,360 kip-in.

Tension Flange Rupture—Lower Unbraced Length

Determine the nominal fl exural strength for the limit state of tensile rupture of the tension fl ange at the bolt holes at the top of 
the lower unbraced length. From AISC Specifi cation Section F13.1, this limit state applies if F A Y F Au fn t y fg< . Also from Section 
F13.1, Yt = 1.0 when Fy /Fu < 0.8.
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4
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Afn = − ( ) ( )
=

1 50
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in. in. 2

in.2

4 n in. + z in.

70 1 13 1 0 55 1 50ksi in. ksi in.2 2. . .( ) < ( )( )
79 1 82 5. .kips kips< ; therefore, the tension fl ange rupture limit state applies.

The nominal fl exural strength for the limit state of tensile rupture at the bolt holes at the top of the lower unbraced length is,

 M
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A
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u fn
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Following is a summary of fl exural strength ratios to be used in combined strength checks in Example 5.4 for the lower unbraced length.

Summary of Flexural Strengths—Lower Unbraced Length 

Lateral-torsional buckling
Value at top of unbraced length governs

LRFD ASD

M

M

M

M
r

c

r

b n

=
φ

= ( )
1 120

0 90

,

.

kip-in.

1,980 kip-in.

= 0 629.

M

M

M

M
r

c

b r

n

=
Ω

=
( )1 67 750

1 980

.

,

kip-in.

kip-in.

= 0 633.
Compression flange local buckling at mid-length

LRFD ASD

= 0 458.

M

M
r

c

=
� �
560

0 90

kip-in.

1,360 kip-in..
M

M
r

c

=
( )1 67 375. kip-in.

1,360 kip-in.

= 0 460.

Compression flange local buckling at top of unbraced length
LRFD ASD

M

M
r

c

= ( )
1 120

0 90

,

.

kip-in.

1,690 kip-in.

 = 0.736

M

M
r

c

=
( )1 67 750. kip-in.

1,690 kip-in.

 = 0.741

Compression fl ange local buckling at the top of the lower unbraced length governs the available fl exural strength.

Upper Unbraced Length, Lb = 54.0 in.

Check web slenderness at the bottom, middle and top of the upper unbraced length, where the limiting width-thickness ratio of 
the web, λrw = 131 (from previous calculation):
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Therefore, the web is slender at all locations within the upper unbraced length.

In order to determine the nominal fl exural strength, values of the web plastifi cation factor, Rpc, and the web buckling factor, Rpg, 
must be calculated. At the bottom of the upper unbraced length, from calculations at the top of the lower unbraced length: 

 Rpc = 1 0.

 Rpg = 0 976.

At the middle of the upper unbraced length:

 Rpc = 1 0.
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At the top of the upper unbraced length:

 Rpc = 1 0.
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Lateral-Torsional Buckling—Upper Unbraced Length

Using the provisions for single linear tapered members with no plate changes, determine the nominal fl exural strength, Mn, for 
the limit state of lateral-torsional buckling in the upper unbraced segment.

First, using the AISC Specifi cation Section F4 and Section 5.4 of this Design Guide, determine the elastic lateral-torsional buck-
ling stress, FeLTB, with Cb = 1 for the location of maximum fl exural stress using properties at the middle of the upper unbraced 
length. The elastic lateral-torsional buckling stress is,
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⎥

= 1 53. in.

 Sxc = Sx = 42.4 in.3 from Table 5-2

 J = 0 because the web is slender throughout this unbraced length.

Therefore,
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Find the location of maximum fl exural stress.

By calculating fr = Mr /Sx at various locations along the unbraced length, it can be shown that the maximum fl exural compression 
stress, frmax, occurs at the top of this unbraced length.

LRFD ASD

f
M

S
rmax

r

xc

=

= 37.7 ksi

1 800

47 8 3

,

.

kip-in.

in.
=

= 25.1 ksi

f
M

S
rmax

r

xc

=

1 200

47 8 3

,

.

kip-in.

in.
=

Calculate elastic buckling multiplier with Cb = 1, ( )γeLTB Cb = 1.

LRFD ASD

γeLTB

eLTB

rmax

F

f
( ) =

( )Cb = 1

Cb = 1

 
=

 

230 ksi

37.7 ksi 
 

 = 6.10

γeLTB C

eLTB C

rmax
b

b
F

f
( ) =

( )
=

=

1

1

 
=

 

230 ksi

25.1 ksi
 

 = 9.16

Check the nominal fl exural strength due to lateral-torsional buckling at the top of the upper unbraced length. Select the equation 
for calculation of nominal fl exural strength, Mn, based on the following ratio:

LRFD ASD

γeLTB r

y

f

F

( )
=

( )6 10 37 7

55

. . ksi

ksi

Cb = 1

 = 4.18

γeLTB r

y

f

F

( )
=

( )9 16 25 1

55

. . ksi

ksi

Cb = 1

 = 4.18

The selection of the equation for Mn is also dependent on the value of FL /Fy.

When Sxt /Sxc ≥ 0.7,

 F FL y= 0 7.  (5.4-14, Spec. Eq. F4-6a)

And therefore,

 

F

F
L

y

= 0 7.

Because 8 2
1

. >
( )

>
=γeLTB C r

y

L

y

b
f

F

F

F
, use Equation 5.4-19 to calculate Mn. The nominal fl exural strength due to lateral-torsional 

buckling at the top of the upper unbraced length is,

 M C R R M
F

R F

F

f

F

F

n b pg pc yc
L

pc y

y

eLTB r

y

L

= − −
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

( ) −

1 1

1 1π
γ

π

.

−−

⎛

⎝

⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟⎟

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

≤

1 1.

R R Mpg pc yc

Cb = 1

 (5.4-19)
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where Cb for the upper unbraced length is determined using the moment diagram in Figure 5-6 as follows:

LRFD ASD

 
f

M

S
r

xc
0 =

 

1 120, kip-in.

37.0 in.3
=

 = 30.3 ksi

 
f

M

S
mid

r

xc

=

 

1 460, kip-in.

42.4 in.3
=

 = 34.4 ksi

 
f

M

S
r

xc
2 =

 

1 800, kip-in.

47.8 in.3
=

 = 37.7 ksi

Because 34 4
30 3 37 7

2
.

. .
ksi

ksi ksi> +

 f f fmid1 22= −   (5.4-2)

 = ( ) −2 34 4 37 7. .ksi ksi

 = 31.1 ksi

 C
f

f

f

f
b = − +
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.
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.
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 = <1 09 2 3. .

 
f

M

S
r

xc
0 =

 

750 kip-in.

37.0 in.3
=

 = 20.3 ksi

 
f

M

S
mid

r

xc

=

 

975 kip-in.

42.4 in.3
=

 = 23.0 ksi

 
f

M

S
r

xc
2 =

 

1 200, kip-in.

47.8 in.3
=

 = 25.1 ksi

Because 23 0
20 3 25 1

2
.

. .
ksi

ksi ksi> +

 f f fmid1 22= −   (5.4-2)

 = ( ) −2 23 0 25 1. .ksi ksi

 = 20.9 ksi
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f
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= −
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. .
.

.
.

.

.
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 = <1 08 2 3. .

Note that the difference in Cb between LRFD and ASD is due to rounding of f1 and f2.

Use ASD value: Cb = 1.08.

Therefore, the nominal fl exural strength for the limit state of lateral-torsional buckling at the top of the upper unbraced length is,
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⎥
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 (5.4-19)
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1 08 0 932 1 0 2 630 1 1

0 7

1 0

1
1 1

. . . ,
.

.

.
kip-in. 4.18

π

π 11
0.7

kip-in.

−

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

≤ ( )( )
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. . ,

 = 2,520 kip-in. ≤ 2,450 kip-in.; therefore use Mn = 2,450 kip-in.
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Check the strength ratio at the top of the unbraced length.

LRFD ASD

M

M

M

M
r

c

r

b n

=
φ

= ( )
1 800

0 90 2 450

,

. ,

kip-in.

kip-in.

= 0.816

M

M

M

M
r

c

b r

n

=
Ω

=
( )1 67 1 200

2 450

. ,

,

kip-in.

kip-in.

= 0.818

Check lateral-torsional buckling strength at the middle of the upper unbraced length. The fl exural stress at this location is,

LRFD ASD

f
M

S
r

r

xc

=

 
=

 

1 460, kip-in.

42.4 in.3

 = 34.4 ksi

f
M

S
r

r

xc

=

 
=

 

975 kip-in.

42.4 in.3

 = 23.0 ksi

Select equation for calculation of nominal fl exural strength, Mn, based on the following ratio:

LRFD ASD

γeLTB r

y

f

F

( )
=

( )6 10 34 4

55

. . ksi

ksi

Cb = 1

 = 3.82

γeLTB r

y

f

F

( )
=

( )9 16 23 0

55

. . ksi

ksi
Cb = 1

 = 3.83

Note that the difference between LRFD and ASD is due to rounding. Use ASD value of 3.83.

Because 8 2. >
( )

>
γeLTB r

y

L

y

f

F

F

F

Cb = 1
, use Equation 5.4-19. The nominal fl exural strength for the limit state of lateral-torsional 

buckling at the middle of the upper unbraced length is,

 M C R R M
F

R F

F

f

F

F

n b pg pc yc
L

pc y

y

eLTB r

y

L

= − −
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

( ) −

1 1

1 1π
γ

π

.

−−

⎛

⎝

⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟⎟

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

≤

1 1.

R R Mpg pc yc

Cb = 1
 (5.4-19)
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 = 2,270 kip-in. > 2,230 kip-in.; therefore use Mn = 2,230 kip-in.
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Check the strength ratio at the middle of the unbraced length.

LRFD ASD

 

M

M

M

M
r

c

r

b n

=
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= ( )
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0 90 2 230

,

. ,

kip-in.

kip-in.

 = 0.727
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M

M

M
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c

b r

n

=
Ω

 
=

( )1 67 975

2 230

.

,

kip-in.

kip-in.

 = 0.730

Check lateral-torsional buckling at the bottom of the upper unbraced length. The fl exural stress at this location is,

LRFD ASD

 
f

M

S
r

r

xc

=

 = 

1 120, kip-in.

37.0 in.3

 = 30.3 ksi

 
f

M

S
r

r

xc

=

 = 

750 kip-in.

37.0 in.3

 = 20.3 ksi

Select the equation for calculation of the nominal fl exural strength, Mn, based on the following ratio:

LRFD ASD

γeLTB r

y

f

F

( )
=

( )6 10 30 3

55

. . ksi

ksi
Cb = 1

 = 3.36

γeLTB r

y

f

F

( )
=

( )9 16 20 3

55

. . ksi

ksi
Cb = 1

 = 3.38

Note that the difference between LRFD and ASD is due to rounding. Use ASD value of 3.38.

Because 8 2. >
( )

>
γeLTB r

y

L

y

f

F

F

F

Cb = 1
, use Equation 5.4-19. The nominal fl exural strength due to lateral-torsional buckling at the 

bottom of the upper unbraced length is,
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 (5.4-19)
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 = 1,990 kip-in. > 1,980 kip-in.; therefore use Mn = 1,980 kip-in.

Check the strength ratio at the bottom of the unbraced length.

LRFD ASD

 

M

M

M

M
r

c

r
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=
φ
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,

. ,
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The top end (largest end) of the unbraced length controls the available fl exural strength using the limit state of lateral-torsional 
buckling.

Compression Flange Local Buckling—Upper Unbraced Length

Determine the nominal fl exural strength, Mn, at the bottom of the upper unbraced length using the limit state of compression 
fl ange local buckling. From previous calculations at the top of the lower unbraced length:

 Mn = 1 690, kip-in. 

Determine the nominal fl exural strength, Mn, for the limit state of compression fl ange local buckling at the middle of the upper 
unbraced length. The selection of the appropriate equation is dependent on the fl ange compactness. 

 
b

t

f

f2
12 0= .  (calculated previously)

From Table B4.1 of the AISC Specifi cation for fl exure in fl anges of doubly symmetric built-up shapes,
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   (5.4-24)

 FL = 38.5 ksi (calculated previously)

Therefore,
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.
. ( ,

.

.

ksi)
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Because 8.73 < 12.0 < 15.4, the compression fl ange is noncompact; therefore, use Equation 5.4-22. The nominal fl exural strength 
for the limit state of compression fl ange local buckling at the middle of the upper unbraced length is,
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Determine the nominal fl exural strength, Mn, for the limit state of compression fl ange local buckling at the top of the upper 
unbraced length.

b

t

f

f2
12 0= .

 
previously calculated

λ pf = 8 73.  compact fl ange limit previously calculated 

(5.4-24)k
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in.
in.

  therefor

=
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4

4

24 0
0 125

0.289 0.35

.
.

; ee use 35, which is the same value used for the middle o0. ff the upper unbraced length  

Therefore,
 λrf = 15 4.  slender fl ange limit (calculated previously)

Because 8.73 < 12.0 < 15.4, the compression fl ange is noncompact; therefore, use Equation 5.4-22. The nominal fl exural strength 
for the limit state of compression fl ange local buckling at the top of the upper unbraced length is,
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Tension Flange Rupture—Upper Unbraced Length

Determine the nominal fl exural strength at the bottom of the upper unbraced length using the limit state of tensile rupture of the 
tension fl ange at the bolt holes. From previous calculations at the top of the lower unbraced length, at the bolt holes:

 Mn = 1 950, kip-in. 

The limit state of compression fl ange local buckling governs over the limit state of tension fl ange rupture at the bottom of the 
upper unbraced length, where

 Mn = 1,690 kip-in.
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Following is a summary of maximum fl exural strength ratios for the upper unbraced length to be used in combined strength 
checks in Example 5.4.

Summary of Flexural Strengths—Upper Unbraced Length

Lateral-torsional buckling
Value at top of unbraced length governs
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Compression flange local buckling at bottom
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Compression flange local buckling at mid-length
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=
( )1 67 975. kip-in.

1,900 kip-in.

 = 0.857

Compression flange local buckling at top

LRFD ASD

M

M
r

c

= ( )
1 800

0 90 2 090

,

. ,

kip-in.

kip-in.

 = 0.957

M

M
r

c

=
( )1 67 1 200. , kip-in.

2,090 kip-in.

 = 0.959

Compression fl ange local buckling at top of upper unbraced length governs.

 5.4.8 Commentary on Example 5.3

Some additional strength could have been calculated for this example if Rpg had been calculated using the refi nement to Equation 
5.4-6 noted in Section 5.4.1. This was not done in the example in the interest of simplicity.

 5.5 COMBINED FLEXURE AND AXIAL FORCE

The equations for combined fl exure and axial force in the 
AISC Specifi cation are essentially the same as those from 
the 1999 LRFD Specifi cation but are substantially different 
from those in the 1989 ASD Specifi cation. The differences 
from the 1989 ASD Specifi cation are: (1) a different form of 
the interaction equations and (2) the assumption that second-
order elastic effects are included in the calculation of the 
required strength. As a result, the interaction equations are 
signifi cantly simplifi ed.

In the 1989 Specifi cation and earlier ASD editions, P-δ 

and P-Δ second-order effects were included in the ASD 
“member stability” interaction Equation H1-1 via the terms 

C
f

F
m

a

e

/ 1−
⎛

⎝
⎜

⎞

⎠
⎟

′
 (note that for members with K  M  1, these

terms captured P-δ effects only, whereas for K > 1, these 
terms captured both P-δ and P-Δ effects). This amplifi er 
gives a very coarse approximation of the second-order ef-
fects in moment frame members subjected to both sway 
and nonsway moments. Because this amplifi er was embed-
ded within Equation H1-1, the corresponding second-order 
analysis was in effect implicit within the resistance calcula-
tions, rather than in the required strength. The 1989 ASD 
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Specifi cation also required a second “member cross-section 
strength” interaction equation check, Equation H1-2. In 
this check, the second-order effects were entirely ignored. 
In the AISC Specifi cation, both P-δ and P-Δ effects must 
be included explicitly, whenever either or both effects are 
signifi cant. These effects are now included explicitly where 
necessary in the calculation of required strengths from the 
structural analysis.

A basic set of interaction equations, written in terms of 
forces and moments, rather than stress, is provided in Sec-
tions H1.1 and H1.2. These provide the simplest approach to 
checking interaction. A more refi ned approach is also pro-
vided in Section H1.3 that permits separate consideration 
of in-plane and out-of-plane buckling. A third, stress-based 
equation is provided as an alternate to the force-based equa-
tions in Section H2. The alternative stress-based equation 
gives a conservative solution that is useful for handling some 
unusual situations. It can be used as a conservative check for 
all cases.

The interaction of fl exural tension fl ange rupture (Specifi -
cation Section F13.1) with axial limit states is not explicitly 
addressed in the AISC Specifi cation. Recommended proce-
dures for such interaction checks are also included below. 
These are intended to provide realistic assessments of the 
interaction effects without unnecessary conservatism. These 
checks should be conducted using required strengths and 
section properties at the locations of holes in the tension 
fl ange, in addition to the other general interaction checks.

 5.5.1 Force-Based Combined Strength Equations

(a) The basic equations for cases with either axial tension or 
compression are:

For 
P

P
r

c

≥ 0 2.

 
P

P

M

M

M

M
r

c

rx

cx

ry

cy

+ +
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ ≤8

9
1 0.  (5.5-1a, Spec. Eq. H1-1a)

For 
P

P
r

c

< 0 2.

 
P

P

M

M

M

M
r

c

rx

cx

ry

cy2
1 0+ +

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ ≤ .  (5.5-1b, Spec. Eq. H1-1b)

where
Pr = required axial strength, kips
Pc = available axial strength, kips; = Pn/Ωc (ASD) or 

ϕcPn (LRFD)
Mrx = required fl exural strength about x-axis, kip-in.
Mry = required fl exural strength about y-axis, kip-in.
Mcx = available fl exural strength about x-axis, kip-in.
 = Mnx/Ωb (ASD) or ϕbMnx (LRFD)
Mcy = available fl exural strength about y-axis, kip-in. 
 = Mny/Ωb (ASD) or ϕbMny (LRFD)

Ωc = 1.67
Ωb = 1.67
ϕc = 0.90
ϕb = 0.90

The absolute values of all the forces and moments should 
be used in these equations. All applicable in-plane and out-
of-plane limit states must be considered in determining the 
ratios of required strength to available strength. Note that 
the equations do not include the second-order P-δ amplifi er, 

C
f

F

m

a

e

1−
′

because the second-order elastic effects are assumed to have 
been included in the calculation of Mr.

(b) At locations of bolt holes in fl anges subject to axial 
and/or fl exural tension, tension fl ange rupture should be 
checked as follows.

  
P

P

M

M
r

c

rx

cx

+ ≤ 1 0.  (5.5-2)

where
Pr = required axial strength, positive in tension, nega-

tive in compression, kips
Pc = available axial strength, kips; = Pn/Ωt (ASD) or 

ϕtPn (LRFD) with Pn calculated per Section 5.2.2
Mrx = required fl exural strength; positive for tension 

in the fl ange under consideration, negative for 
compression

Mcx = available fl exural strength about x-axis, kip-in.
 = Mnx/Ωb (ASD) or ϕbMnx (LRFD) with Mnx = Mn tak-

en as:

If F A Y F Au fn t y fg< , 

  M
F A

A
Sn

u fn

fg
xt=  < Fy Zx (5.5-3)

otherwise, 
  M F Zn y x=  (5.5-4)

where
Yt = 1.0 for Fy /Fu ≤ 0.8, otherwise Yt = 1.1
Zx = plastic section modulus calculated with bolt holes 

not taken into consideration, in.3

Each fl ange having axial and/or fl exural tension should be 
checked separately. The AISC Specifi cation (AISC, 2005) 
does not have an explicit interaction check for rupture forces. 

 5.5.2  Separate In-Plane and Out-of-Plane Combined 
Strength Equations

For doubly symmetric prismatic members with bending 
primarily about one axis, the limit states involving in-plane 
and out-of-plane buckling may be combined and checked 
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separately (see Section H1.3 of the AISC Specifi cation). In 
cases where the governing limit state in axial compression is 
in-plane buckling and the governing limit state in fl exure is 
out-of-plane buckling, this approach may result in a more eco-
nomical member design. For members under biaxial bending, 
if Mr /Mc > 0.05 for both axes, this procedure is not applicable.

There is insuffi cient information at this time to justify the 
extension of this procedure to tapered members or members 
with noncompact or slender cross sections. Consequently, it is 
recommended that these provisions not be used for members 
other than prismatic doubly symmetric compact members.

 5.5.3 Stress-Based Combined Strength Equations

The following stress-based interaction equation is equivalent 
to AISC Specifi cation Equation H2-1 provided in Section H2 
of the AISC Specifi cation and may be used in lieu of those 
previously listed for any member. The symbols used are 
slightly different than those used in the AISC Specifi cation 
to prevent any confusion with those used in the 1989 ASD 
Specifi cation (AISC, 1989).

 
f

F

f

F

f

F
ra

ca

rbx

cbx

rby

cby

+ + ≤ 1 0.   (5.5-5, from Spec. Eq. H2-1)

where
Fca = available axial stress, ksi; = Fcr /Ωc (ASD) or ϕcFcr 

(LRFD)
Fcbx = available fl exural stress about x-axis, ksi
 = Mnx /ΩbS (ASD) or ϕbMnx /S (LRFD)
Fcby = available fl exural stress about y-axis, ksi
 = Mny /ΩbS (ASD) or ϕb Mny /S (LRFD)
fra = required axial stress, ksi
frbx = required fl exural stress about x-axis, ksi
frby = required fl exural stress about y-axis, ksi
Ωc = 1.67
Ωb = 1.67
ϕc = 0.90
ϕb = 0.90

Although the Specifi cation presents this equation in terms 
of principal-axis stresses, it is presented here in terms of the 
familiar x- and y- axes, because its application is limited to 

singly and doubly symmetric sections in this document.
In applying these equations, the sign of the required 

stresses may be taken into account to permit fl exural and ax-
ial compression stresses of opposite sign to offset. However, 
there is always a point on the cross section where the fl exural 
and axial compression stresses will be additive. Therefore, 
the net effect of using Equation H2-1 is a more conservative 
assessment than obtained using Equations H1-1. As in the 
other combined strength methods discussed earlier, it is as-
sumed that all required second-order effects are included in 
the required stress terms.

Tapered I-shaped members can be checked by using the 
stresses at the fl ange tips. All applicable limit states should 
be considered when calculating the available stresses on each 
fl ange. The available stress on each fl ange should be calcu-
lated using the governing limit state for the member and the 
section modulus at that point. The required stress should be 
calculated using the same section modulus used to calculate 
the available stress at the point under consideration.

At locations of bolt holes in fl anges subject to axial and/
or fl exural tension, tension fl ange rupture should be checked 
using Section 5.5.1(b). Each fl ange having axial and/or fl ex-
ural tension should be checked separately. Alternately, the 
following stress-based procedure may be used. The required 
and available stresses computed using the following equa-
tions are fi ctitious and should not be used for any purpose 
other than Equation 5.5-6, but result in strength checks iden-
tical to those generated by Section 5.5.1(b):

  
f

F

f

F
ra

ca

rbx

cbx

+ ≤ 1 0.  (5.5-6)

where
Fca = available axial stress, ksi
 = Pc /Ag with Pc as defi ned in Section 5.5.1(b)
Fcbx = available fl exural stress about x-axis, ksi
 = Mc /Sx with Mc as defi ned in Section 5.5.1(b)
Sx = gross elastic section modulus calculated to the 

fl ange under consideration, in.3

fra = required axial stress, ksi
 = Pr /Ag, positive in tension, negative in compression
frbx = required fl exural stress, ksi
 = Mr /Sx, positive in tension, negative in compression
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 Example 5.4—Combined Axial Compression and Flexure

Given:

Check the strength of the member used in Examples 5.2 and 5.3 for combined axial compression and fl exure using the required 
and available strengths from those examples.

Evaluate using AISC Specifi cation Section H1.1, H1.3 (if permitted), and H2.

Axial strength ratios from Example 5.2: 

In-Plane Flexural Buckling

LRFD ASD

 

P

P

P

P
r

c

r

c n

=
φ

= ( )
11 3

0 90 168

.

.

kips

kips

 = 0.0747

 

P

P

P

P
r

c

c r

n

=
Ω

=
( )1 67 7 50

168

. . kips

kips

 = 0.0746
Out-of-Plane Flexural Buckling—Lower Unbraced Length

LRFD ASD

P

P
r

c

= ( )
11 3

0 90 139

.

.

kips

kips

 = 0.0903

P

P
r

c

=
( )1 67 7 50

139

. . kips

kips

 = 0.0901
Out-of-Plane Flexural Buckling—Upper Unbraced Length

LRFD ASD

P

P
r

c

= ( )
11 3

0 90 158

.

.

kips

kips

 = 0.0795

P

P
r

c

=
( )1 67 7 50

158

. . kips

kips

 = 0.0793

Flexural strength ratios from Example 5.3—At the top of the lower unbraced length:

Lateral-Torsional Buckling

Value at Top of Lower Unbraced Length Governs

LRFD ASD

 

M

M

M

M
r

c

r

b n

=
φ

= ( )
1 120

0 90

,

.

kip-in.

1,980 kip-in.

 = 0.629

 

M

M

M

M
r

c

b r

n

=
Ω

=
( )1 67 750

1 980

.

,

kip-in.

kip-in.

 = 0.633
Compression Flange Local Buckling at Mid-Length

LRFD ASD

M

M
r

c

= ( )
560

0 90

kip-in.

1,360 kip-in..

 = 0.458

M

M
r

c

=
( )1 67 375. kip-in.

1,360 kip-in.

 = 0.460
Compression Flange Local Buckling at Top of Unbraced Length

LRFD ASD

M

M
r

c

= ( )
1 120

0 90

,

.

kip-in.

1,690 kip-in.

 = 0.736

M

M
r

c

=
( )1 67 750. kip-in.

1,690 kip-in.

 = 0.741
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Flexural strength ratios from Example 5.3—At the top of the upper unbraced length:

Lateral-Torsional Buckling

Value at Top of Upper Unbraced Length Governs

LRFD ASD

 

M

M

M

M
r

c

r

b n

=
φ

 
= ( )

1 800

0 90 2 450

,

. ,

kip-in.

kip-in.

 = 0.816

 

M

M

M

M
r

c

b r

n

=
Ω

 
=

( )1 67 1 200

2 450

. ,

,

kip-in.

kip-in.

 = 0.818
Compression Flange Local Buckling at Bottom

LRFD ASD

M

M
r

c

= ( )
1 120

0 90 1 690

,

. ,

kip-in.

kip-in.

 = 0.736

M

M
r

c

=
( )1 67 750. kip-in.

1,690 kip-in.

 = 0.741
Compression Flange Local Buckling at Mid-Length

LRFD ASD

M

M
r

c

= ( )
1 460

0 90 1 900

,

. ,

kip-in.

kip-in.

 = 0.854

M

M
r

c

=
( )1 67 975. kip-in.

1,900 kip-in.

 = 0.857
Compression Flange Local Buckling at Top

LRFD ASD

M

M
r

c

= ( )
1 800

0 90 2 090

,

. ,

kip-in.

kip-in.

 = 0.957

M

M
r

c

=
( )1 67 1 200. , kip-in.

2,090 kip-in.

 = 0.959

Tension fl ange rupture from Example 5.3:
At bolt holes, Mc = Mnx = 1,950 kip-in.

Solution A:

Applying the provisions of AISC Specifi cation Section H1.1, use the worst-case in-plane and out-of-plane ratios for axial and 
fl exure when checking each unbraced segment.

Combined Axial Compression and Flexure—Lower Unbraced Length

From previous calculations in Example 5.2 and 5.3 and as summarized earlier in this example, it is demonstrated that out-of-
plane buckling controls the axial strength of the lower unbraced length and compression fl ange local buckling at the top of the 
lower unbraced length controls fl exural strength.
P

P
r

c

< 0 2. ; therefore, use Equation 5.5-1b and AISC Specifi cation Equation H1-1b:

  
P

P

M

M

M

M
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c
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cy2
1 0+ +

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ ≤ .  (5.5-1b, Spec. Eq. H1-1b)

Applying this interaction equation with the strength ratios summarized previously in this example:

LRFD ASD
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⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ ≤ .

0 0903

2
0 736 0 0 781

.
. .+ +( ) =

 

P

P

M

M

M

M
r

c

rx

cx

ry

cy2
1 0+ +

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ ≤ .

0 0901

2
0 741 0 0 786

.
. .+ +( ) =
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Combined Axial Compression and Flexure—Upper Unbraced Length

From previous calculations in Example 5.2 and 5.3 and as summarized earlier in this example, it is demonstrated that out-of-
plane buckling controls the axial strength of the upper unbraced length and compression fl ange local buckling at the top of the 
upper unbraced length controls fl exural strength.

P

P
r

c

= <0 0795 0 2. . , therefore, use Equation 5.5-1b and AISC Specifi cation Equation H1-1b:

  
P

P

M

M

M

M
r

c

rx

cx

ry

cy2
1 0+ +

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ ≤ .  (5.5-1b, Spec. Eq. H1-1b)

Applying this interaction equation with the strength ratios summarized earlier in this example gives:

LRFD ASD

0 0795

2
0 957 0 0 997

.
. .+ +( ) = 0 0793

2
0 959 0 0 999

.
. .+ +( ) =

Combined Axial Tension and Flexure

Determine the available tensile strength due to the limit state of tensile rupture in the net section of the fl ange at the bolt holes 
located at the top of the lower unbraced length. From AISC Specifi cation Section D3.3, the effective net area is,

 

A A U

A b t ht

e n

g f f w

=

= +

=

=

where

2

5.444

1 0

4

2in.

from Table D3.1

Therefore,

U

A A U

A d

e n

g h

=

=

= − + z

.

( )⎡⎣ ⎤⎦
= − ( )⎡⎣ ⎤⎦

tf 1 0

5.44 4 n in. + z in.  4 in.  1.0

.

in 2

== 4 69. in.2

2(6 in.)(4 in.) + 19.5 in.(0.125 in.)

Using AISC Specifi cation Section D2, the available tensile strength based on the limit state of tensile rupture, Pc, is,

LRFD ASD

 P F Ac t u e= φ

= ( )( )0 75 70. ksi 4.69 in.2

 = 246 kips

 
P

F A
c

u e

t

=
Ω

=
( )70 ksi 4.69 in.

2.0

2

 = 164 kips

 M
F A

A
Sn

u fn

fg
xt=  (5.5-3)

 = 1,950 kip-in.

 (Spec. Eq. D3-1)
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From Example 5.3, F A Y F Au fn t y g< ; therefore, the available fl exural strength due to the limit state of tensile rupture of the tension 
fl ange is determined in accordance with AISC Specifi cation Section F13.1. From Example 5.3, the nominal fl exural strength is,

 M
F A

A
Sn

u fn

fg
xt=   (5.5-3, from Spec. Eq. F13-1)

 = 1,950 kip-in.

The available fl exural strength is,

LRFD ASD

 M Mcx b nx= φ
= ( )0 90 1 950. , kip-in.

 = 1,760 kip-in.

 
M

M
cx

nx

b

=
Ω

= 1 950, kip-in.

1.67

 = 1,170 kip-in.

Check the interaction Equation 5.5-2 (a reduced version of AISC Specifi cation Equation H1-1b) given in this Design Guide for 
combined axial and fl exural strength:

LRFD ASD

 On the fl ange in fl exural tension:
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P
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M
r

c

rx

cx

+ ≤ 1 0.
 

(5.5-2)

− + = ≤11 3
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1 120
0 590 1 0

. ,
. .

kips

kips

kip-in.

1,760 kip-in.
o.k.

 On the fl ange in fl exural tension:
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P

M

M
r

c

rx

cx

+ ≤ 1 0.
 

(5.5-2)

− + = ≤7 50

164

750
0 595 1 0

.
. .

kips

kips

kip-in.

1,170 kip-in.
o.k.

By inspection, tension fl ange rupture cannot occur on the fl ange in fl exural compression.

Solution B:

As discussed in Section 5.5.2, it is not recommended that AISC Specifi cation Section H1.3 be applied to members other than 
doubly symmetric compact sections.

Solution C:

Apply AISC Specifi cation Section H2 to the upper and lower unbraced lengths at the bottom, middle and top locations, using the 
required and available stresses calculated from section properties at those locations.

Lower Unbraced Length

Check combined axial compression and fl exural strength at the bottom of the lower unbraced length. As given in Example 5.2, 
h = 12.0 in. and Ag = 4.50 in.2 at this location.

Axial strength is governed by out-of-plane fl exural buckling of the lower unbraced length as determined previously. The required 
axial strength, Pr, was given and the nominal axial strength, Pn, was determined previously. Using the stress-based interaction 
Equation 5.5-5 of this Design Guide (similar to AISC Specifi cation Equation H2-1), check the interaction of combined axial and 
fl exural strength. 
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LRFD ASD
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(5.5-5)

Because there is no fl exural stress at the bottom
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(5.5-5)

Because there is no fl exural stress at the bottom
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Check combined axial compression and fl exural strength at the middle of the lower unbraced length. As given in Example 5.3, 
h = 15.8 in. and Sx = 28.7 in.3, and Ag = 15.8 in. (0.125 in.) + 2(6 in.) (4 in.) = 4.98 in.2

Axial strength is governed by out-of-plane fl exural buckling of the lower unbraced length and fl exural strength is governed by 
compression fl ange local buckling, as determined previously. Using the stress-based interaction Equation 5.5-5 of this Design 
Guide (similar to AISC Specifi cation Equation H2-1), check the interaction of combined axial and fl exural strength.
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Check combined axial compression and fl exural strength at the top of the lower unbraced length. As given in Example 5.3, 
h = 19.5 in. and Sx = 37.0 in.3 and Ag = 19.5 in. (0.125 in.) + 2(6 in.)(4 in.) = 5.44 in.2

Axial strength is governed by out-of-plane fl exural buckling and fl exural strength is governed by compression fl ange local 
buckling in the lower unbraced length, as determined previously. Using the stress-based interaction Equation 5.5-5 of this Design 
Guide (similar to AISC Specifi cation Equation H2-1), check the interaction of combined axial and fl exural strength at the top of 
the lower unbraced length.
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Upper unbraced length

Check combined axial compression and fl exural strength at the bottom of the upper unbraced length. As determined at the top of 
the lower unbraced length, h = 19.5 in., Ag = 5.44 in.2 and Sx = 37.0 in.3

Axial strength is governed by out-of-plane fl exural buckling and fl exural strength is governed by compression fl ange local 
buckling in the upper unbraced length, as determined previously. Using the stress-based interaction Equation 5.5-5 of this Design 
Guide, check the interaction equation for combined axial and fl exural strength at the bottom of the upper unbraced length.
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LRFD ASD
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Check combined axial compression and fl exural strength at the middle of the upper unbraced length. From Example 5.3, 
h = 21.8 in. and Sx = 42.4 in.3, and Ag = 21.8 in. (0.125 in.) + 2(6 in.)(4 in.) = 5.73 in.2

Axial strength is governed by out-of-plane fl exural buckling and fl exural strength is governed by compression fl ange local 
buckling in the upper unbraced length, as determined previously. Using the stress-based interaction Equation 5.5-5 of this Design 
Guide, check the combined axial and fl exural strength at the middle of the upper unbraced length.
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LRFD ASD
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Check combined axial compression and fl exural strength at the top of the upper unbraced length. As given in Examples 5.2 and 
5.3, at the top of the lower unbraced length, h = 24.0 in., Ag = 6.00 in.2 and Sx = 47.8 in.3

Axial strength is governed by out-of-plane fl exural buckling and fl exural strength is governed by compression fl ange local 
buckling in the upper unbraced length, as determined previously. Using the stress-based interaction Equation 5.5-5 of this Design 
Guide, check combined axial and fl exural strength at the top of the upper unbraced length.
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LRFD ASD
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Tension fl ange rupture

Check the tension fl ange at the bolt holes using the alternate stress-based interaction Equation 5.5-6 given in this Design Guide 
for combined axial tension and fl exural strength. As previously given, at this location, h = 19.5 in., Ag = 5.44 in.2 and Sx = 37.0 in.3
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Therefore, tension fl ange rupture cannot occur in the fl ange in fl exural compression.

 5.5.4 Commentary on Example 5.4

The strength-based method from the AISC Specifi cation Sections H1.1 and H1.2 is simpler to apply than the stress-based provi-
sions of Section H2 and provides more liberal results for this example.
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 5.6 SHEAR

Beam shear in tapered members is handled using the provi-
sions of Chapter G of the AISC Specifi cation with several 
minor modifi cations based on Falby and Lee (1976). Like 
prismatic members, tapered members with suffi ciently 
stocky webs are subject to the limit state of shear yielding 
and those with webs having higher slenderness are subject 
to the limit states of elastic or inelastic buckling. The shear 
strength of stiffened web panels may be calculated with or 
without consideration of tension fi eld action. If tension fi eld 
action is used, additional detailing requirements must be met.

The web area, Aw, the web height to thickness ratio, h/tw, 
and stiffener spacing to web height ratio, a/h, are all a func-
tion of web height. As a result, the shear strength of a web-
tapered member varies along its length. For unstiffened 
webs, the shear strength should be checked on a cross sec-
tion basis at least at the ends and at locations of any steps 
in the shear diagram or steps in the thickness of the web. 
For stiffened webs, a single shear tension fi eld and/or shear 
buckling strength is calculated for each panel based predom-
inantly on the cross-section geometry at the mid-length of 
the panel.

Due to an increase in the safety factor from 1.5 to 1.67 for 
shear yielding for all built-up members in ASD (and the use 
of a comparable ϕv = 0.90 versus 1.0 in LRFD), ASD shear 
strengths calculated using the AISC Specifi cation are 10% 
lower for stocky webs than they were under the 1989 provi-
sions. The calculated strength of webs subject to buckling is 
not signifi cantly different from that in the 1989 edition; how-
ever, the resistance equations have been simplifi ed and non-
dimensionalized. The tension and shear interaction limits 
from the previous ASD and LRFD Specifi cations have been 
removed from the AISC Specifi cation. For members having 
suffi cient fl ange size, the interaction between the fl exural 
and shear resistances is negligible (White et al., 2008). In 
an extension to the AISC Specifi cation, for members with 
small fl ange sizes, a reduced tension fi eld strength may be 
determined, neglecting any anchorage from the fl anges. The 
interaction between the fl exural and shear resistances also 
may be neglected for this calculation of the shear strength.

Blodgett (1966) proposed a method to calculate a “modi-
fi ed shear,” adding or subtracting the vertical component of 
force in sloped fl anges to the required shear strength of webs 
of tapered members. This has not been included here due to 
the lack of research to validate the procedure.

 5.6.1 Shear Strength of Unstiffened Webs

Webs without stiffeners, or with stiffeners spaced at more 
than three times the minimum web height in the panel, hmin, 
are defi ned as unstiffened. The available shear strength of 
these types of webs should be calculated on a cross sec-
tion by cross section basis along the member length. Use 

the AISC Specifi cation provisions for unstiffened webs with 
the cross-section properties at each location of interest. The 
required shear strength at any location along the member 
should not exceed the available strength calculated at that 
location.

Calculate the available shear strength as:

 V F A Cn y w v= 0 6.  (5.6-1, Spec. Eq. G2-1)

  φv v= =0 90 1 67. .(LRFD) (ASD)Ω
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 (5.6-4, Spec. Eq. G2-5)

where
kv = 5 (5.6-5)

AISC Specifi cation Section F13.2 specifi es h tw ≤ 260)(  for 
unstiffened members.

 5.6.2  Shear Strength of Stiffened Webs 
Without Using Tension Field Action

Webs with stiffeners at a clear spacing of not more than three 
times the smallest web height in the panel, hmin, are defi ned 
as stiffened. To calculate the available shear strength of these 
types of webs based on the limit state of web shear buckling, 
use the procedure from Section 5.6.1 with the cross section 
at the middle of the panel. The shear strength is taken as a 
constant along the entire panel length, equal to the value de-
termined at the middle of the panel, but need not be taken at 
any location as less than would be calculated at that location 
without stiffeners (kv = 5).

Calculate kv as:

 k
a/h

v

avg

= +
( )

5
5

2
 (5.6-6)
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where
a = clear distance between stiffeners
havg = average web height within the panel, equal to the 

web height at the middle of a panel with a linear 
web taper; for panels with a “pinch point,” use the 
web height at that point

For panels with a change of web thickness, use the thickness 
of the thinner web.

The AISC Specifi cation does not credit shear stiffeners 
spaced wider than a/h = [260/(h/tw)]2 with contributing to 
web shear strength. This limitation is arbitrary and was se-
lected to facilitate handling during fabrication and erection 
of conventional steel structures. The authors recommend that 
this restriction can be waived if there is a means to handle 
members with stiffener spacings that exceed the limit.

Stiffeners at the boundaries of panels must be detailed in 
accordance with AISC Specifi cation Section G2.2 using the 
web height at the stiffener location for h.

 5.6.3  Shear Strength of Stiffened Webs Using Tension 
Field Action

The use of tension fi eld action is restricted to shear panels 
having webs supported on all four sides by fl anges and stiff-
eners within the following limits:

1. The panel must not be an end panel; however, Murray 
and Shoemaker (2002) indicate that moment end-plate 
splices can be relied on to provide tension fi eld anchor-
age in negative moment regions (compression on bottom 
or inside fl ange).

2. The spacing of stiffeners must be such that the ratio of 
the clear spacing to the smallest web height, a/hmin, does 
not exceed 3.0.

Section G3.1 of the AISC Specifi cation also restricts a/h to a 
maximum of [260/(h/tw)]2 for the use of tension fi eld action 
(but not for the calculation of web shear buckling resistances 
based on the unstiffened web equations). This restriction 
comes from a fabrication and handling limit recommended 
by Basler (1961). The authors recommend that this limit can 
be exceeded if the manufacturer, shipper and erector can 
handle members that violate this restriction. Experimental 
shear strengths, including tension fi eld action, are predicted 
adequately by the following equations for prismatic mem-
bers that violate Basler’s fabrication and handling limit 
(White and Barker, 2008).

Calculate the available shear strength for each web panel as 
follows:

1. Compute Cv using the average web height within the 
panel, havg, in Equations 5.6-2 through 5.6-4 and using 
Equation 5.6-6 for kv.

2. The appropriate resistance factor and safety factor are:

φv v= =0 90 1 67. .(LRFD) (ASD)Ω
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where: 
  Aw = havgtw, in.2 (5.6-9)
  hmin = smallest web height in the panel, in.

4. For web panels in which the fl anges violate either of the 
3.a or 3.b limits:
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 (5.6-11)

Equations 5.6-7 and 5.6-8 provide a reasonable estimate 
of the shear resistances based on the Falby and Lee (1976) 
equations for members with suffi ciently large fl ange sizes 
and for web taper angles up to the maximum of 15°. The web 
panel aspect ratio is taken as a/hmin because the smaller web 
height tends to govern the angle of inclination of the tension 
fi eld in most cases. The use of Equations 5.6-7 through 5.6-9 
also provides a good estimate of the resistances determined 
by the Falby and Lee (1976) equations for all the cases con-
sidered by these authors. Equations 5.6-10 and 5.6-11 are 
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for h in the application of these provisions. The stiffener area 
should be checked using the values of Cv and Vr /Vc in each 
of the stiffened web panels adjacent to the stiffener. Also, in 
the case of two adjacent stiffened panels, the larger value for 
the stiffener area governs. The Cv and Vr /Vc from adjacent 
unstiffened webs do not apply.

 5.6.4 Web-to-Flange Weld

The minimum required strength of the weld between the 
web and fl ange, Vrw, is determined as it would be for a pris-
matic member. A weld larger than the minimum size may be 
appropriate in the vicinity of connections.

  V
V Q

I
rw

r

x

=  (5.6-12)

where
Vrw = required weld shear strength, kip/in.
Vr = required beam shear strength, kips
Ix = x-axis moment of inertia, in.4

Q =  static moment of area of the fl ange taken about the 
neutral axis, in.3

an extension of the AISC Specifi cation provisions. This ex-
tension is incorporated within the AASHTO (2004 & 2007) 
provisions and is based on the studies by White et al. (2008). 
Equation 5.6-11 is referred in the literature to as the “true 
Basler” shear strength (Galambos, 1998). Equation 5.6-8 is 
based on the assumed development of a full tension fi eld 
(uniform tensile diagonal stress) throughout the web panel. 
The “true Basler” shear strength given by Equation 5.6-11 
is based on the assumed development of a tension fi eld only 
within an effective band width be assumed in Basler’s calcu-
lation of the angle of inclination of the tension fi eld. The use 
of a/hmin along with Equations 5.6-8 and 5.6-11 tends to pe-
nalize web panels with smaller fl anges, larger spacing of the 
stiffeners and/or larger web taper angle. As noted previously, 
the shear strength Vn is taken as a constant along the entire 
panel length. The required shear resistance must be less than 
or equal to the corresponding available shear resistance at all 
locations along the length of the panel. 

Stiffeners used to provide the boundaries of panels de-
signed using tension fi eld action must be detailed in accor-
dance with Sections G2.2 and G3.3 in the AISC Specifi ca-
tion. The web height at the stiffener location should be used 

 Example 5.5—Shear Strength of a Tapered Member

Given:

Determine the available shear strength of the member shown in Figure 5-7 using each of the following methods: 

1. No stiffeners provided.
2. Stiffeners provided neglecting tension fi eld action.
3. Stiffeners provided including tension fi eld action.

Material Properties:
Fy = 55 ksi
Fu = 70 ksi

Geometric Properties:
Top fl ange = PL 4 × 6
Bottom fl ange = PL 4 × 6
Web thickness = 0.125 in.
Left web height = 18.0 in.
Right web height = 24.0 in.
Member length = 54.0 in.

= +( )0 0Depth at center 18  in   24.  in.. . /2

21  in.= .0 Fig. 5-7. Figure for Example 5-5.
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Solution A: No stiffeners provided—compute strength at locations of interest using kv = 5.

Determine the available shear strength at the ends of the member with no stiffeners.
At the left end of the member, check the h/tw limit for an unstiffened member:

 

h

tw

=

= <

18 0

144 260

.

. .

in.

0.125in.

o k

From Section 5.6.1 of this Design Guide and AISC Specifi cation Section G2:
 V F A Cn y w v= 0 6.  (5.6-1, Spec. Eq. G2-1)

where
A dtw w=

= + ( )⎡⎣ ⎤⎦ ( )
=

     in. in. in.

      in 2 

18 0 2 0 125

2 31

. .

. .

4

The equation for Cv is dependent on h/tw. Because h/tw exceeds the following value with kv = 5 (no stiffeners), use AISC Specifi ca-
tion Equation G2-5.

 

1 37 1 37
5 29 000

55

70 3 144

. .
,

.

k E

F
v

y

=
( )

= <

ksi

ksi

                

 C
Ek

h t F
v

v

w y

=
( )
1 51

2

.
 (5.6-4, Spec. Eq. G2-5)

 

=
( )( )

( )
=

1 51 29 000 5

144 55

0 192

2

. ,

.

ksi

ksi

Therefore,

 V F A Cn y w v= 0 6.  (5.6-1, Spec. Eq. G2-1)

 

= ( )( )( )
=

0 6 55 2 31 0 192

14 6

2. . .

.

ksi in.

kips

The available shear strength is:

LRFD ASD

φVn = ( )0 90 14 6. . kips

 = 13 1. kips

Vn

vΩ
= 14 6. kips

1.67

 = 8 74. kips

At right end of segment, check the h/tw limit for an unstiffened web:

 

h

tw

=

= <

24 0

192 260

.

. .

in.

0.125in.

o k
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From Section 5.6.1 of this Design Guide and AISC Specifi cation Section G2:

 V F A Cn y w v= 0 6.  (5.6-1, Spec. Eq. G2-1)

where

 

A dtw w=

= + ( )⎡⎣ ⎤⎦ ( )
=

     in. in. in.

      in 2 

24 0 2 0 125

3 06

. .

. .

4

The equation for Cv is dependent on h/tw. Because h/tw exceeds the following value with kv = 5 (no stiffeners), use AISC Specifi ca-
tion Equation G2-5.

 

1 37 1 37
5 29 000

55

70 3 192

. .
,

.

k E

F
v

y

=
( )

= <

ksi

ksi

                ;; , therefore

 C
Ek

h/t F
v

v

w y

=
( )
1 51

2

.
 (5.6-4, Spec. Eq. G2-5)

 

=
( )( )

( )
=

1 51 29 000 5

192 55

0 108

2

. ,

.

ksi

ksi

Therefore,

 V F A Cn y w v= 0 6.  (5.6-1, Spec. Eq. G2-1)

 

= ( )( )( )
=

0 6 55 3 06 0 108

10 9

2. . .

.

ksi in.

kips

The available shear strength is:

LRFD ASD

φVn = ( )0 90 10 9. . kips

 = 9 81. kips

Vn

vΩ
= 10 9. kips

1.67

 = 6 53. kips

Solution B: Stiffeners provided—neglecting tension fi eld action—compute strength at average depth.

 Determine the available shear strength when stiffeners are provided, but neglect tension fi eld action. Calculate the strength at 
the average depth. The authors recommend that the limit of a/h h/tw= ( )⎡⎣ ⎤⎦260

2
 can be ignored if the fabricator and erector 

agree to handle the members without this restriction.

From Section 5.6.1 of this Design Guide and AISC Specifi cation Section G2:

 V F A Cn y w v= 0 6.  (5.6-1, Spec. Eq. G2-1)

where
A d tw avg w=

= + ( )⎡⎣ ⎤⎦ ( )
=

     in. in. in.

      in

21 0 2 0 125

2 69

. .

. .

4
22 
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The equation for Cv is dependent on h/tw and kv.

 

h

tw

= 21 0

0 125

.

.

in.

in.

 = 168

For stiffened webs, 

 

k
a h

k a/h > 3.0 or a/h > 
h/t

v

v
w

= +
( )

( )
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

5
5

260

2

2

or 

= 5 when 

Assuming a clear distance of 54.0 in. between stiffeners, a/havg = 54 in./21 in. = 2.57 < 3.0, therefore,

 

kv = +
( )

=

5
5

2 57

5 76

2
.

.   

Because h/tw exceeds the following value with kv = 5.76, use AISC Specifi cation Equation G2-5 to calculate Cv.

 

1 37 1 37
5 76 29 000

55

75 5

. .
. ,

.

k E

F
v

y

=
( )

=

ksi

ksi

                 < 1168;  therefore,

 C
Ek

F
v

v

y

=
1 51

2

.

h/tw( )
 (5.6-4, Spec. Eq. G2-5)

 

=
( )( )
( )

=

1 51 29 000 5 76

168 55

0 162

2

. , .

.

ksi

ksi

Therefore,

 V F A Cn y w v= 0 6.  (5.6-1, Spec. Eq. G2-1)

 

= ( )( )( )
=

0 6 55 2 69 0 162

14 4

2. . .

.

ksi in.

kips

The available shear strength is:

LRFD ASD

φVn = ( )0 90 14 4. . kips

 = 13 0. kips

Vn

vΩ
= 14 4. kips

1.67

 = 8 62. kips

Note that the available strength is slightly less than the strength calculated without stiffeners at the far left end of the member 
above (8.74 kips ASD and 13.1 kips LRFD). The shear strength at the far left side may be taken as the larger value calculated 
without stiffeners at that location. Slightly to the right of the left end, the shear strength calculated without stiffeners decreases 
below the value calculated earlier with stiffeners, so this larger value is used for the remainder of the panel.
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Solution C: Stiffeners provided—including tension fi eld action—compute strength at average depth.

Determine the available shear strength when stiffeners are provided spaced at 54 in., including tension fi eld action.
Calculate the strength at the average depth.

Check tension fi eld limits.

1. Not an end panel (assumed) o.k.
2. a/hmin = 54.0 in./18.0 in. = 3.0 o.k.
3. The authors recommend that the limit of a/h = ⎡⎣ ⎤⎦260

2
h/tw( )  can be ignored if the manufacturer and erector agree to 

handle the members without this restriction.

Therefore, tension fi eld action may be considered.

Determine whether Equations 5.6-7 and 5.6-8 or 5.6-10 and 5.6-11 apply.

 

t h

t b t b

w avg

ft ft fc fc0 5

0 125 21 0

0 5 2 6 00 0 2.

. .

. . .+( ) =
( )

( )
in. in.

in. 550

1.75 2.5

in.

                            

( )⎡⎣ ⎤⎦
= ≤ o.k.

 

h

b

avg

f min

.

. .

=

= <

21 0

3 50 6 0

in.

6.00 in.

o.k.

Therefore, use Equations 5.6-7 and 5.6-8. 

 

a

havg

=

=

54 0

2 57

.

.

in.

21.0 in.

      

 

kv = +
( )

=

5
5

2 57

5 76

2
.

.    

(5.6-6)

 

1 37 1 37
5 76 29 000

55

75 5

. .
. ,

.

k E

F

h

v

y

a

=
( )

= <

ksi

ksi

                
vvg

wt
= 168; , therefore

 C
Ek

h t F
v

v

w y

=
( )
1 51

2

.
 (5.6-4, Spec. Eq. G2-5)

 

=
( )( )
( )

=

1 51 29 000 5 76

168 55

0 162

2

. , .

.

ksi

ksi

 

A h tw avg w=

= ( )
=

     in. in.

     in.

21 0 0 125

2 63 2

. .

.

 (5.6-9)
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By inspection, 
h

t

k E

F

avg

w

v

y

> 1 10. ; therefore,

 V F A C
C

a h
n y w v

v= +
−

+ ( )

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

0 6
1

1 15 1
2

.
. min

 (5.6-8)

 

= ( )( ) + −

+ ( )

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

0 6 55 2 63 0 162
1 0 162

1 15 1 3 0

2

2
. . .

.

. .
ksi in.

     kips= 34 1.

Shear strength at all locations within the panel.

LRFD ASD

φVn = ( )0 90 34 1. . kips

 = 30 7. kips

Vn

vΩ
= 34 1. kips

1.67

 = 20 4. kips

The weld between the fl anges and web would be sized based on the required shear in the section using Equation 5.6-12. 

5.7 FLANGES AND WEBS WITH 
CONCENTRATED FORCES

Tapered members are subject to the limit states given in 
the AISC Specifi cation Section J10. With the exception of 
web sidesway buckling, these are localized limit states. As 
such, it is recommended that these limit states be checked 
using the member cross-section geometry at the location 
of interest. 

At present there is no available test or theoretical studies 
for web sidesway buckling of tapered members. In the ab-
sence of such data it is recommended that the average depth 
along the unbraced length under consideration be used in 
AISC Equations J10-6 and J10-7.

For evaluating the panel zone at the intersection of tapered 

rafters and outside columns, the provisions of Chapter 5 of 
AISC Design Guide 16, Flush and Extended Multiple Row 
Moment End-Plate Connections (Murray and Shoemaker, 
2002) are recommended.

 5.8 ADDITIONAL EXAMPLES

The following examples repeat the geometry and loadings 
of Examples 1.2, 1.3 and 1.4 presented earlier, with the ex-
ception that the fl anges are of different size, such that the 
cross section is singly symmetric, and the brace spacing is 
different on each fl ange. These examples illustrate the pro-
visions for singly symmetric cross-section members and 
constrained-axis torsional column buckling.

 Example 5.6—Tapered Column with Unequal Flanges and One-Sided Bracing

Given:

Evaluate the compressive strength of the member shown in Figure 5-8. The required concentric axial strength, including all 
second-order effects, is constant kips over the height of the column, neglecting the accumulating self-weight. From an in-plane 
structural analysis, Kx = 1.0. Assume Ky and Kz = 1.0.

Material Properties:
Fy = 55 ksi
Fu = 70 ksi
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Geometric Properties:
Left (outside) fl ange = PL R in. × 6 in.
 Although a R-in.-thick fl ange plate is used in this example, the AISC Steel Construction Manual recommends that plate thick-
nesses up to and including a in. be specifi ed in z in. increments.
Right (inside) fl ange = PL c in. × 6 in.
Web thickness = 0.125 in.
Outside fl ange bracing at 90.0 in. above the bottom
Girt depth = 8.00 in.
No bracing on inside fl ange

By inspection, the member must be checked for:

A. In-plane fl exural buckling (one strength for the entire co lumn)

B. Constrained-axis torsional buckling (one strength for the entire column)
C. Out-of-plane fl exural buckling (check each unbraced length separately)

Torsional buckling need not be checked because the cross section is not doubly symmetric. Flexural-torsional buckling need not 
be checked because constrained-axis torsional buckling is being checked.

Fig. 5-8. Web-tapered column in Example 5.6.
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Solution:

Table 5-3. Section Properties

Top

h 24.0 in.

h/t 192

Ag 6.19 in.2

Ix 607 in.4

at h/t = 131

h 16.4 in.

h/t 131

Ag 5.24 in.2

Bottom

h 12.0 in.

h/t 96.0

Ag 4.69 in.2

Ix 136 in.4

In-Plane Flexural Buckling Strength

Because the member has a single taper with no plate changes, use Equation 4.5-4 to determine Pex.

 P
EI

L
ex

x=
′π2

2  (4.5-4)

At bottom end, web height = 12.0 in., Ix,small = 136 in.4

At top end, web height = 24.0 in., Ix,large = 607 in.4

From Section 4.5.2, calculate I ′x at x L
I

I
xSmall

xLarge

=
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟0 5.  

0.0732

 from the small end as follows:

x L
I

I
x small

x large

=
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

= ( )

0 5.
,

,

 

0.5 144 in.  
136 in.

6

0.0732

4

007 in.

  in.

4

⎛

⎝
⎜

⎞

⎠
⎟

=

0 0732

64 5

.

.

 Web height  = 12.0 in. + (64.5 in./144 in.)(24.0 in. − 12.0 in.) 
= 17.4 in.

I ′x = 299 in.4 (calculations not shown)

P
EI

L
ex

x=
′π2

2
 (4.5-4)

=
)

( )
=

π2

2

(29,000 ksi)(299 in.

144

4 130,

in.

kips

4
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Calculate Fn1, the nominal buckling stress without consideration of slender elements.

By inspection, under a constant axial force, the location with the largest ratio of fr /Fy is the bottom end of the column.

From Table 5-3, Ag = 4.69 in.2

 

F
P

A
e

ex

g

=

=

=

   
kips

4.69 in.

   ksi

2

4 130

881

,

 

F

F

y

e

=

= ≤

55ksi

ksi

     therefore  use Equation 

881

0 0624 2 25. . ; , 55 3-2 b. 0

 F Fn

F

F
y

y

e
1 0 658=

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

.  (5.3-20b)

 

= ⎡⎣ ⎤⎦0 658 550 0624. . ksi 

= 53.6 ksi

Calculate the nominal buckling strength multiplier, γn1, using the required stress, frmax, at the location where Fn1 was computed (at 
the bottom end of the column):

LRFD ASD

f
P

A
rmax

r

g

=

= 11 3. kips

4.69 in.2

 = 2.41 ksi

γn
n

rmax

F

f
1

1=

= ksi

2 41 ksi

53 6.

.

 = 22.2

f
P

A
rmax

r

g

=

= 7 50. kips

4.69 in.2

 = 1.60 ksi

γn
n

rmax

F

f
1

1=

 
= ksi

 ksi

53 6

1 60

.

.

 = 33.5

Locate critical section and calculate slenderness reduction factor, Q.

The critical section is where 
f

QF
r

y

 is largest. Calculate this value at the bottom end of the column.

First, determine the slenderness reduction factor, Q, by checking the outside fl ange slenderness using AISC Specifi cation Table 
B4.1. The fl ange width-thickness ratio is,

 

λ =

=

= ( )
=

b

t
b

t

f

f

  

  
in.

2

  

2

6 0

R in.

13 7

.

.
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From Table B4.1, for uniform compression in fl anges of built-up I-shaped sections,

λr
c

y

k E

F
= 0 64.

where 

 

k
h

t

k

c

w

c

=

=

= < <

4

4

12 0
0 125

0 408 0 35 0 76

   
in.
in.

.
.

. .

Therefore, use kc = 0.408.

 λr
c

y

k E

F
= 0 64.   (Spec. Table B4.1)

 

=
( )

=

0 64
0 408 29 000

55

9.39 < 13.7;  therefore, outside flange is slender

.
. , ksi

ksi

    

Determine the slenderness reduction factor, Q, using AISC Specifi cation Section E7.1. For slender-element sections,
Q = QsQa

Determine the value of Q s based on AISC Specifi cation Section E7.1(b) for both fl anges. The equation used for Qs is dependent 
on the fl ange slenderness, λ, compared to the following value:

 

1 17 1 17
0 408 29 000

55

17 2

. .
. ,

.

k E

F
c

y

=
( )

=

ksi

ksi

                

9.39 < 13.7 < 17.2; therefore, apply AISC Specifi cation Equation E7-8 to the outside fl ange,

 Q
b

t

F

Ek
s

y

c

= − ⎛
⎝⎜

⎞
⎠⎟

1 415 0 65. .   (Spec. Eq. E7-8)

 

= − ( ) ( )
=

1 415 0 65 13 7
55

29 000

0 808

. . .
,

.

ksi

ksi 0.408

Determine Qs  for the inside fl ange slenderness where the width-thickness ratio is,

 

λ =

=

= ( )
=

b

t
b

t

f

f

  

  
in.

2 in.

  

2

6 0

9 60

.

.

c

and

(5.4-24)
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λr = 9.39 from previous calculations for the inside fl ange

λr = 9.39 < λ = 9.60; therefore, the inside fl ange is slender.

9.39 < 9.60 < 17.2; therefore, apply AISC Specifi cation Equation E7-8 to the inside fl ange,

 Q
b

t

F

Ek
s

y

c

= − ⎛
⎝⎜

⎞
⎠⎟

1 415 0 65. .   (Spec. Eq. E7-8)

 

= − ( ) ( )
=

1 415 0 65 9 60
55

29 000

0 990

. . .
,

.

ksi

ksi 0.408

Check web slenderness at the bottom of the column:

 

λ =

=

=

h

tw

  
in.

0.125in.

  

12 0

96 0

.

.

Using AISC Specifi cation Table B4.1, for uniform compression in webs of doubly symmetric I-shaped sections:

 

λr
y

E

F
=

=

1 49

1 49
29 000

55

.

.
,

   
ksi

ksi

   = 34.2 < 96.0;  therefore, the web is slender

 

Calculate Q a using AISC Specifi cation Section E7.2:

Q
A

A
a

eff

g

=

where
A = Ag 
 = 4.69 in.2 from Table 5-3
Aeff = b t tf f inside f outside( , ,+ ) + betw

b
E

f ( )b/t

E

f
be = −

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

≤1.92t 1
0 34.

  (Spec. Eq. E7-17)

With fr = frmax and γn1 determined previously, the stress, f, at which the effective width is calculated is determined as follows:

LRFD ASD

 f fn r= γ 1

= ( )22 2 2 41. . ksi

 = 53 5. ksi

 f fn r= γ 1

= ( )33 5 1 60. . ksi

 = 53 6. ksi

(Spec. Table B4.1)

( . Eq. E7-16)Spec
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Note that the difference in f between LRFD and ASD is due to rounding. Use ASD value: f = 53.6 ksi and b/t = h/tw = 96.0.

 b t
E

f

E

f
be = −

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

≤1 92 1
0 34

.
.

( )b/t
 (Spec. Eq. E7-17)

 

= ( ) −1 92 0 125
29 000

53 6
1

0 34

96 0

29 000

53 6
. .

,

.

.

.

,

.
in.

 ksi

ksi

 ksi

ksii

in. 12.0 in.

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= ≤5 12.

 

tA b teff b ( ) f f,inside tf,outside e w= + +

= 6.00 in. (c in. + R in.) + 5.12 in. (0.125 in.)

3.83 in.2=

Therefore,

 

Q
A

A
a

eff

g

=

=

     =
3.83in.

4.69 in.

    0.817

2

2

If both fl anges are in compression under combined loading, Qs is the lower of the two Qs values calculated.
 Qs = 0.808 from outside fl ange
 Q = Qs Qa

  = 0.808(0.817)
  = 0.660

If the outside fl ange is in tension under combined loading, Qs is taken from the inside fl ange.
 Qs = 0.990 from inside fl ange
 Q = Qs Qa

  = 0.990(0.817)
  = 0.809

For load cases where the inside fl ange is in compression, such as axial load with no moment, use Q = 0.660. However, calcula-
tions for this example will be carried out assuming the outside fl ange will be in tension under the combined loading in Example 
5.8. It is conservative to use the smaller value of Q if the stress distribution is not known at the time of calculation.

LRFD ASD

f

QF
r

y

= ( )
2.41ksi

ksi0 809 55.

 = 0 0542.

f

QF
r

y

= ( )
1.60 ksi

ksi0 809 55.

 = 0 0360.

Calculate 
f

QF
r

y

 at the top end of the column, although it is not likely to control.

From Table 5-3, Ag = 6.19 in.2

Check the outside fl ange slenderness using AISC Specifi cation Table B4.1:
 λ = 13.7 from bottom of column determined earlier

 (Spec. Eq. E7-16)
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From AISC Specifi cation Table B4.1, for uniform compression in fl anges of built-up I-shaped sections,

λr
c

y

k E

F
= 0 64.

where

 

k
h

t

Specificationc

w

=

=

4

4

2

(from AISC Table B4.1 footnote a)

   
44 0

0 125

0 289 0 35

.
.

. .

in.
in.

   = <

λr
c

y

k E

F
= 0 64.  (Spec. Table B4.1)

=
( )

= <

0 64
0 35 29 000

55

8 69 13 7

.
. ,

. . ;

ksi

ksi

therefore, outside flange is slender

Determine the slenderness reduction factor, Q, using AISC Specifi cation Section E7.1. For slender-element sections,
 Q = QsQa

Determined the value of Qs based on AISC Specifi cation Section E7.1(b) for both fl anges. The equation used for Qs is dependent 
on the fl ange slenderness, λ, compared to the following value:

 

1 17 1 17
0 35 29 000

55

15 9

. .
. ,

.

k E

F
c

y

=
( )

=

ksi

ksi

                

8.69 < 13.7 < 15.9; therefore, apply AISC Specifi cation Equation E7-8 to the outside fl ange.

 Q
b

t

F

Ek
s

y

c

= − ⎛
⎝⎜

⎞
⎠⎟

1 415 0 65. .  (Spec. Eq. E7-8)

 

= − ( ) ( )
=

1 415 0 65 13 7
55

29 000

0 759

. . .
,

.

ksi

ksi 0.35

Determine Qs for the inside fl ange slenderness.

 λ  = =b t 9 60.  from bottom of column determined previously
 kc = 0.35 from outside fl ange determined previously
 λr  = < <8 69 9 60 15 9. . . ; therefore, AISC Specifi cation Equation E7-8 applies

 Q
b

t

F

Ek
s

y

c

= − ⎛
⎝⎜

⎞
⎠⎟

1 415 0 65. .  (Spec. Eq. E7-8)

 

= − ( ) ( )
=

1 415 0 65 9 58
55

29 000

0 957

. . .
,

.

ksi

ksi 0.35

 (5.4-24)
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Check web slenderness:

 

λ =

=

=

h

tw

  
in.

0.125in.

  

24 0

192

.

As calculated previously,
 λr = <34 2 192. , therefore the web is slender.

As calculated previously,
 λr = <34 2 192. ; therefore the web is slender.

Calculate Qa using AISC Specifi cation Section E7.2:

 Q
A

A
a

eff

g

=  ( . Eq. E7-16)Spec

where
A = Ag 
 = 6.19 in.2 from Table 5-3
Aeff = bf (tf, inside + tf, outside) + betw

b t
E

f ( )b/t

E

f
be = −

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

≤1 92 1
0 34

.
.

  (Spec. Eq. E7-17)

The stress, f, at which the effective width is calculated is determined as follows:

LRFD ASD

 
f

P

A
r

r

g

=

 
= 11 3. kips

6.19 in.2

 = 1.83 ksi
 f fn r= γ 1

= ( )22 2 1 83. . ksi

 = 40 6. ksi

 
f

P

A
r

r

g

=

 
= 7 50. kips

6.19 in.2

 = 1.21 ksi
 f fn r= γ 1

 = ( )33 5 1 21. . ksi

 = 40 5. ksi

Note that the difference in f between LRFD and ASD is due to rounding. Use ASD value: f = 40.5 ksi.

Therefore, with b/t = 192, the effective width is,

 b t
E

f ( )b/t

E

f
be = −

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

≤1 92 1
0 34

.
.

  (Spec. Eq. E7-17)

 

= ( ) −1 92 0 125
29 000

40 5
1

0 34

192

29 000

40 5
. .

,

.

. ,

.
in.

 ksi

ksi

 ksi

ksi

⎡⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= ≤6 12. in. 24.0 in.

 Aeff = bf (tf, inside + tf, outside) + betw

 =    3.95 in.2

= 6.00 in. (c in. + R in.) + 6.12 in. (0.125 in.)
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Q
A

A
a

eff

g

=

=

     = 3.96 in.

6.19 in.

    0.640

2

2

If both fl anges are in compression under combined loading, Qs is the lower of the two Qs values calculated.
 Qs = 0.759 from outside fl ange
 Q = Qs Qa

 = 0.759(0.640)
 = 0.486

If the outside fl ange is in tension under combined loading, Qs is taken from the inside fl ange.
 Qs = 0.957 from inside fl ange
 Q = Qs Qa

 = 0.957(0.640)
 = 0.612

For load cases where the inside fl ange is in compression, such as axial load with no moment, use Q = 0.486. However, calcula-
tions for this example will be carried out assuming the outside fl ange will be in tension under the combined loading in Example 
5.8. It is conservative to use the smaller value of Q if the stress distribution is not known at the time of calculation.

LRFD ASD

f

QF
r

y

= ( )
1.83ksi

ksi0 612 55.

 = 0.0544

f

QF
r

y

= ( )
1.21ksi

ksi0 612 55.

 = 0.0359

Calculate 
f

QF
r

y

 at h/tw = 131 (location where kc reaches lower limit of 0.35).

First, determine the slenderness reduction factor, Q. First, check the outside fl ange slenderness using AISC Specifi cation Table 
B4.1. The fl ange width-thickness ratio is,

 

λ =
=

b/t

.13 7asdetermined previously for the bottom end of the  column

 From Table B4.1, for uniform compression in fl anges of built-up I-shaped sections,

 
λr

c

y

k E

F
= 0 64.

where
kc = 0.35 as given

Therefore,

 λr
c

y

k E

F
= 0 64.   (Spec. Table B4.1)

 

=
( )

= <

0 64
0 35 29 000

55

8 69 13 7

.
. ,

. . ; ,

ksi

ksi

 therefore  outside flange is slender

 (Spec. Eq. E7-16)

031-138_DG25_Ch5.indd   111 6/21/11   1:47 PM



112 / FRAME DESIGN USING WEB-TAPERED MEMBERS / AISC DESIGN GUIDE 25

Determine the slenderness reduction factor, Q, using AISC Specifi cation Section E7.1. For slender-element sections,
Q = QsQa

Determine the value of Qs based on AISC Specifi cation Section E7.1(b) for both fl anges. The equation for Qs is dependent on the 
fl ange slenderness, λ, compared to the following value:

 

1 17 1 17
0 35 29 000

55

15 9

. .
. ,

.

k E

F
c

y

=
( )

=

ksi

ksi

 8.69 < 13.7 < 15.9; therefore, apply AISC Specifi cation Equation E7-8 to the outside fl ange,

 Q
b

t

F

Ek
s

y

c

= − ⎛
⎝⎜

⎞
⎠⎟

1 415 0 65. .   (Spec. Eq. E7-8)

 

= − ( ) ( )
=

1 415 0 65 13 7
55

29 000

0 759

. . .
,

.

ksi

ksi 0.35

Determine Qs for the inside fl ange slenderness using the following values:
 λ = 9.58 determined previously for the bottom of the column 
 kc = 0.35 as given
 λr = 8.60 as determined previously < 9.58; therefore, inside fl ange is slender

 Q
b

t

F

Ek
s

y

c

= − ⎛
⎝⎜

⎞
⎠⎟

1 415 0 65. .   (Spec. Eq. E7-8)

 

= − ( ) ( )
=

1 415 0 65 9 58
55

29 000

0 957

. . .
,

.

ksi

ksi 0.35

Check web slenderness:

 

λ =

=

h

tw

131 as given

 λr = 34.2 < 131, therefore web is slender.

Calculate Qa using AISC Specifi cation Section E7.2:

 Q
A

A
a

eff

g

=  (Spec. Eq. E7-16)

where
A = Ag 
 = 5.24 in.2 from Table 5-3
Aeff = bf (tf, inside + tf, outside) + betw

b t
E

f

E

f
be = −

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

≤1 92 1
0 34

.
.

( )b/t
  (Spec. Eq. E7-17)
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The stress, f, at which the effective width is calculated is determined as follows:

LRFD ASD

 
f

P

A
r

r

g

=

 
= 11 3. kips

5.24 in.2

 = 2.16 ksi
 f fn r= γ 1

= 22.2(2.16 ksi)
 = 48.0 ksi

 
f

P

A
r

r

g

=

 
= 7 50. kips

5.24 in.2

 = 1.43 ksi
 f fn r= γ 1

= 33.5(1.43 ksi)
 = 47.9 ksi

Note that the difference in f between LRFD and ASD is due to rounding. Use ASD value: f = 47.9 ksi.

Calculate the effective width with b/t = h/tw = 131 and b = h = 16.4 in. from Table 5-3:

 b t
E

f

E

f
be = −

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

≤1 92 1
0 34

.
.

( )b/t
  (Spec. Eq. E7-17)

 

= ( ) −1 92 0 125
29 000

47 9
1

0 34

131

29 000

47 9
. .

,

.

. ,

.
in.

 ksi

ksi

 ksi

ksi

⎡⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= ≤5 53. in. 16.4 in.

 Aeff = bf (tf, inside + tf, outside) + betw

 = 3.88 in.2

= 6.00 in. (c in. + R in.) + 5.53 in. (0.125 in.)

Therefore,

 

Q
A

A
a

eff

g

=

=

= 3.88 in.

5.24 in.

0.740

2

2

If both fl anges are in compression under combined loading, Qs is the lower of the two Qs values calculated.
 Qs = 0.759 from outside fl ange
 Q = Qs Qa

 = 0.759(0.740)
 = 0.562

If the outside fl ange is in tension under combined loading, Qs is taken from the inside fl ange.
 Qs = 0.956 from inside fl ange

 Q = Qs Qa

 = 0.957(0.740)
 = 0.708

For load cases where the inside fl ange is in compression, such as axial load with no moment, use Q = 0.562. However, calcula-
tions for this example will be carried out assuming the outside fl ange will be in tension under the combined loading in Example 
5.8. It is conservative to use the smaller value of Q if the stress distribution is not known at the time of calculation.

LRFD ASD

f

QF
r

y

= ( )
2.16 ksi

ksi0 708 55.

 = 0 0555.

f

QF
r

y

= ( )
1.43ksi

ksi0 708 55.

 = 0 0367.

 (Spec. Eq. E7-16)
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The location where h/tw = 131 is the critical one, because 
f

QF
r

y

 is the largest at that point.

Calculate the nominal buckling stress at the critical location with the highest ratio of fr /QFy .

As determined earlier, the critical location occurs where h/tw = 131.

  Q = 0.708 previously calculated

From a previous calculation, Pex = 4,130 kips; therefore, the elastic critical buckling stress is,

 

F
P

A
e

ex

g

=

=

=

kips

in.

ksi

2

4 130

5 24

788

,

.

 

QF

F

y

e

=
( )

= ≤

0 708 55

788

0 0494 2 25

.

. . ; ,

ksi

ksi

        therefore  usee Equation 5 3-23b.

 F QFcr

QF

F
y

y

e=
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

0 658.  (5.3-23b)

 

= ⎡⎣ ⎤⎦ ( )
=

0 658 0 708 55

38 1

0 0494. .

.

. ksi

ksi

 P F An cr g=  (5.3-6, Spec. Eq. E7-1)

 

= ( )
=

38 1 5 24

200

2. .ksi in.

kips

Calculate the in-plane strength ratio at the location of the highest ratio of fr /QFy .

LRFD ASD

 

P

P

P

P
r

c

r

c n

=
φ

= ( )
11 3

0 90 200

.

.

kips

kips

 = 0.0628

 

P

P

P

P
r

c

c r

n

=
Ω

=
( )1 67 7 50

200

. . kips

kips

 = 0.0626

Constrained-Axis Torsional Buckling 

 Determine the elastic constrained-axis torsional buckling load, PeCAT, using Section 5.3.1 of this Design Guide and properties 
at the middle of the 144 in. inside unbraced length. The equation is,

 P
E C I a

K L
GJ

r r a
eCAT

w y s

z b inside x y c

=
+( )

( )
+

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥ + +

π2 2

2 2 2 2

1

,

 (5.3-15)

The section properties should be taken at the midpoint of the inside unbraced length as follows:

031-138_DG25_Ch5.indd   114 6/21/11   1:47 PM



AISC DESIGN GUIDE 25 / FRAME DESIGN USING WEB-TAPERED MEMBERS / 115

At bottom end, web height = 12.0 in.
At top end, web height = 24.0 in.
At mid-length, web height = 18.0 in.

 Ag = 5.44 in.2

 y = 10.2 in. from outside

 

I

r
I

A

x

x
x

g

=

=

322 in.4

 in.

 in
= 322

5 44

4

. ..
in.

2

7 69= .

 

I

r
I

A

y

y
y

g

=

=

=

=

9 58

9 58

5 44
1 33

4

2

.

.

.
.

in.

 in.

 in.
in.

4

The moment inertia about the y-axis for the outside fl ange is,

 

Iy1

3
R in.

12
=

( )6.00 in.

in.4= 3 94.

The moment inertia about the y-axis for the inside fl ange is,

 

Iy2

3

12

5 63

=

=

c in.(6.00 in.)

in.4.

The warping constant is calculated as,

 C
h I

I

I

w
o y

y

y

=
+

2
1

1

2

1

  (5.3-16) 

where

h h t to f f= + +( )

=

0 5

18 3

1 2.

.

   

in.

= 18.0 in. + 0.5(c in. + R in.)

Therefore,

 C
h I

I

I

w
o y

y

y

=
+

2
1

1

2

1

  (5.3-16) 

 

=
( )

+

=

18 3 3 94

1

776

2
. .in. in.

3.94 in.

5.63 in.

in.

4

4

4

6
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And the St. Venant’s torsional constant is,

 

J
ht b t t

b

b t t

b
w ft ft ft

ft

fc fc fc

fc

= + −
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ + −

⎛3 3 3

3 3
1 0 63

3
1 0 63. .

⎝⎝
⎜⎜

⎞

⎠
⎟⎟ −

=
( )

+
( )

−

( . )

. .

5 3 13

18 0 0 125

3

6.00 in. R in.

3
1 0

3 3
in. in.

..
.

.63
R in. 6 00

3
1 0 63

6.00 in.

in.

6.00 in.

⎛

⎝
⎜

⎞

⎠
⎟ +

( )
−

⎛c in. c in.

⎝⎝
⎜

⎞

⎠
⎟

=  in.40 0912.

3

The distance from the center of the girt or purlin to the centroid of the column is,

 
a yc = +girt depth

2

 

= +

=

8 00 in.
10 2 in.

14 2 in.

.
.

.
2

The distance from the center of the girt or purlin to the shear center of the column is,
a a ys c o= +

where

 y
t h I

I
yo

f o y

y

= + −1 2

2
  (5.3-19)

 

= +
( )

−

=

R in. 18 3 5 63
10 2

0 664

. .
.

.

2

in. in.

9.58 in.
in.

in.

4

4

Therefore,

 

a a ys c o= +
= +
=

   in. in.

   in.

14 2 0 664

14 9

. .

.

The elastic constrained-axis torsional buckling strength is, 

 

P
E C I a

K L
GJ

r r a
eCAT

w y s

z b, inside x y c

=
+( )

( )
+

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥ + +

π2 2

2 2 2 2

1
(5.33-15)

ksi in. in. in.

in.

6 4

=
+ ( )⎡

⎣
⎤
⎦

(
π2 2

29 000 776 9 58 14 9

1 0 144

, . .

. ))⎡⎣ ⎤⎦
+ ( )

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪ ( ) +2 2
11 200

1

7 69 1 33
,

. .
ksi 0.0912 in.

in. in.

4

(( ) + ( )
=

2 2
14 2

157

. in.

kips

Calculate Fn1, the nominal buckling stress without consideration of slender elements.

By inspection, under a constant axial force, the location with the largest ratio of fr /Fy is the bottom end. From Section 5.3.2,

 F Fn

F

F
y

y

e
1 0 658=

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

.  (5.3-20b)

where

 Fe = 
P

A
eCAT

g

Ag = 4.69 in.2 previously calculated

031-138_DG25_Ch5.indd   116 6/21/11   1:47 PM



AISC DESIGN GUIDE 25 / FRAME DESIGN USING WEB-TAPERED MEMBERS / 117

Therefore,

 

Fe =

=

157

33 5

kips

4.69 in.

   ksi

2

.

Calculate the following to verify that Equation 5.3-20b applies.

 

F

F

y

e

=

= <

55

1 64 2 25

ksi

33.5ksi

     therefore  use Equation 5. . ; , ..3-2 b0

The nominal buckling stress, without consideration of slenderness effects is,

 F Fn

F

F
y

y

e
1 0 658=

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

.  (5.3-20b)

 

= ⎡⎣ ⎤⎦0 658 551 64. . ksi 

= 27.7 ksi

Calculate the nominal buckling strength multiplier, γn1, using the required stress, frmax, at the bottom location where Fn1 was 
computed:

LRFD ASD

 
f

P

A
rmax

r

g

=

= 11 3. kips

4.69 in.2

 = 2.41 ksi

 γn1 = 
F

f
n

rmax

1

 
=

 

27 7

2 41

.

.

ksi

ksi

 = 11.5

 
f

P

A
rmax

r

g

=

= 7 50. kips

4.69 in.2

 = 1.60 ksi

 γn1 = 
F

f
n

rmax

1

 
=

 

27 7

1 60

.

.

ksi

ksi

 = 17.3

Locate critical section and calculate slenderness reduction factor, Q.

From calculations for in-plane buckling, it can be concluded that the critical location will be at the location where h tw/ = 131
(location where kc reaches the lower limit of 0.35).

Determine the value of the slenderness reduction factor, Q, based on previous calculations.

For the outside fl ange: 
 Qs = 0.759 from previous calculation 

For the inside fl ange: 
 Qs = 0.957 from previous calculation 

For the web:

 

λ =

=

h

tw

  131

λr = <34 2 131. ; as determined previously. Therefore, the web is slender.
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Calculate Qa using AISC Specifi cation Section E7.2:

 Q
A

A
a

eff

g

=  (Spec. Eq. E7-16)

where
A  = Ag 

= 5.24 in.2 from Table 5-3
Aeff = bf (tf, inside + tf, outside) + betw

b t
E

f

E

f
be = −

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

≤1 92 1
0 34

.
.

( )b/t
  (Spec. Eq. E7-17)

The stress, f, at which the effective width is calculated is determined as follows:

LRFD ASD

 
f

P

A
r

r

g

=

 
= 11 3

5 24 2

.

.

kips

in.

 = 2.16 ksi

 f fn r= γ 1

= ( )11 5 2 16. . ksi

 = 24.8 ksi

 
f

P

A
r

r

g

=

 
= 7 50

5 24 2

.

.

kips

in.

 = 1.43 ksi

 f fn r= γ 1

= ( )17 3 1 43. . ksi

 = 24.7 ksi

Note that the difference in f between LRFD and ASD is due to rounding. Use ASD value: f = 24.7 ksi.

 b t
E

f

E

f
be = −

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

≤1 92 1
0 34

.
.

( )b/t
  (Spec. Eq. E7-17)

 

= ( ) −1 92 0 125
29 000

24 7
1

0 34

131

29 000

24 7
. .

,

.

. ,

.
in.

 ksi

ksi

 ksi

ksi

⎡⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= ≤7 49. in. 16.4 in.

 

A b t t b teff f f, inside f, outside e w=   +( ) +

= 6.00 in.(c in. + R in.) + 7.49 in.(0.125 in.)
4.12 in.2=

 Q
A

A
a

eff

g

=

=

= 4.12 in.

5.24 in.

0.786

2

2

  (Spec. Eq. E7-16)

If both fl anges are in compression under combined loading, Qs is the lower of the two Qs values calculated.
 Qs = 0.759 from outside fl ange

 

Q Q Qs a=

= ( )
=

  

  

0 759 0 786

0 597

. .

.
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If the outside fl ange is in tension under combined loading, Qs is taken from the inside fl ange.
 Qs = 0.957 from inside fl ange

 

Q Qs a=
= ( )
=

   

   

0 957 0 786

0 752

. .

.

Q

For load cases where the inside fl ange is in compression, such as axial load with no moment, use Q = 0.598. However, calcula-
tions for this example will be carried out assuming the outside fl ange will be in tension under the combined loading in Example 
5.8. It is conservative to use the smaller value of Q if the stress distribution is not known at the time of calculation.

LRFD ASD

f

QF
r

y

= ( )
2.16 ksi

ksi0 752 55.

 = 0 0522.

f

QF
r

y

= ( )
1.43ksi

ksi0 752 55.

 = 0 0346.

Calculate the nominal buckling strength at the critical location.
 Q = 0.752 from the location where h/tw = 131 as determined previously

 Fe = 
P

A
eCAT

g

 

=

=

157

5 24

30 0

kips

in.

    ksi

2.

.

 

QF

F

y

e

=
( )

= <

0 752 55

30 0

1 38 2 25

.

.

. . ; ,

ksi

ksi

 therefore  use  Equation 5 3-23b or  Equation E7-2. .Spec

 F QFcr

QF

F
y

y

e=
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

0 658.  (5.3-23b)

 

= ⎡⎣ ⎤⎦ ( )
=

0 658 0 752 55

23 2

1 38. .

.

. ksi

ksi

 P F An cr g=  (5.3-6, Spec. Eq. E7-1)

 

= ( )
=

23 2 5 24

122

2. .ksi in.

kips

Calculate the constrained-axis torsional buckling strength ratio.

LRFD ASD

 

P

P

P

P
r

c

r

c n

=
φ

= ( )
11 3

0 90 122

.

.

kips

kips

 = 0 103.

 

P

P

P

P
r

c

c r

n

=
Ω

=
( )1 67 7 50

122

. . kips

kips

 = 0.103

Out-of-Plane Flexural Buckling Strength

By inspection and comparison with Example 5.2, it is apparent that out-of-plane fl exural buckling will not control over 
constrained-axis torsional buckling. If this were not obvious, the checks would be identical to those in Example 5.2, except for 
the difference in section properties. Separate checks would be performed for the upper and lower unbraced lengths.
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Column Strength

For the condition of pure axial compression, the column strength is the lowest strength calculated for the limit states of in-plane 
buckling of the whole column and constrained-axis torsional buckling of the whole column. Following is a summary of axial 
strengths due to in-plane fl exural buckling.

Summary of Axial Strengths

In-Plane Flexural Buckling

LRFD ASD

 

P

P

P

P
r

c

r

c n

=
φ

= ( )
11 3

0 90 200

.

.

kips

kips

 = 0.0628

 

P
P

P
P

r

c

c r

n
=

Ω

=
( )1 67 7 50

200

. . kips

kips

 = 0.0626

Constrained-Axis Torsional Buckling

LRFD ASD

P

P
r

c

= ( )
11 3

0 90 122

.

.

kips

kips

 = 0.103

P

P
r

c

=
( )1 67 7 50

122

. . kips

kips

 = 0.103

Constrained-axis torsional buckling governs the strength of the column.

The available strengths are calculated as:

LRFD ASD

φc nP = ( )
=

0 90 122

110

. kips

kips

Pn

cΩ
=

=

122

73 1

kips

1.67

     kips.

 Example 5.7—Singly Symmetric Section Tapered Beam with One-Sided Bracing

Given:

Evaluate the fl exural strength of the member from Example 5.6 with the required strength shown in Figure 5-9.

 Material Properties:
Fy = 55 ksi
Fu = 70 ksi

Geometric Properties:
Left (outside) fl ange = PL R in. × 6 in.
 Note: Although a R-in.-thick fl ange plate is used in this example, the AISC Steel Construction Manual recommends that plate 
thicknesses up to and including a in. be specifi ed in z in. increments.
Right (inside) fl ange = PL c in. × 6 in.
Web thickness = 0.125 in.
Outside fl ange bracing by a girt at 90.0 in. above bottom
No fl ange bracing on inside
Two n-in.-diameter bolt holes in outside fl ange at brace points
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Table 5-4. Section Properties and Strengths

Top

h 24.0 in.

Sxc 54.2 in.3

Sxt 45.5 in.3

Zx 56.1 in.3

Myc 2,980 kip-in.

Myt 2,500 kip-in.

Mp 3,090 kip-in.

At girt
h 19.5 in.

Sxt 35.0 in.3

Mid-length

h 18.0 in.

Sxc 38.6 in.3

Sxt 31.7 in.3

Myc 2,120 kip-in.

Myt 1,740 kip-in.

Mp 2,130 kip-in.

Bottom h 12.0 in.

Note: Sxc refers to the inside flange and Sxt refers to the outside flange.

Fig. 5-9. Web-tapered fl exural member in Example 5.7.
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By inspection, the member must be checked for the following limit states:
a. Tension fl ange yielding
b. Lateral-torsional buckling
c. Compression fl ange local buckling
d. Tension fl ange rupture at the bolt holes 

The compression fl ange yielding limit state need not be checked because the tension fl ange is smaller than the compression 
fl ange.

Inside unbraced length, Lb = 144 in.

Check web slenderness at the middle and top of unbraced length. Check not needed at bottom because Mr = 0.

At mid-length:
 yc = 8 35.  in.  [distance from the extreme fi ber of the compression (inside) fl ange to the centroid]

 
h y tc c fc= −( )2

 

= −(
=

2 8 35

16 1

.

.

 in.

 in.

c in.)

 

h

t
c

w

⎛

⎝
⎜

⎞

⎠
⎟ =

=
mid-length

 in.

 in.

16 1

0 125

1

.

.

229

 yp = 7 06. in.  [distance from the extreme fi ber of the compression (inside) fl ange to the plastic neutral axis]

 

h y tp p fc= −( )
= −(
=

2

2 7 06

13 5

    in.

    in.

.

.

c in.)

From Table 5-4:
 Myt = 1,740 kip-in.
 Myc = 2,120 kip-in.
 Mp = 2,130 kip-in.

Using the AISC Specifi cation Table B4.1, determine the limiting width-thickness ratios for compact and noncompact webs in 
fl exure for singly symmetric I-shaped sections:

 λ λpw

c

p y

p

y min

rw

h

h

E

F

M

M

=

−
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

≤

0 54 0 09

2

. .

 (Spec. Table B4.1)

 

=

16 1
13 5

29 000
55

0 54
2 130
1 740

.

.
,

.
,
,

 in.
 in.

 ksi
 ksi

 kip-in.
 kipp-in.

⎛

⎝
⎜

⎞

⎠
⎟ −

⎡

⎣
⎢

⎤

⎦
⎥

=

0 09

84 0

2

.

.

 

λ

λ

rw y

pw

E F=

=
= > =

5 70

5 70 29 000 55

131 84 0

. /

. , /

.

     ksi ksi

     ; thherefore, use = 84.0 λ pw

 (Spec. Table B4.1)
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At the top:
 yc = 11 2.  in.

 
h y tc c fc= −( )2

  

= −(
=

2 11 2

21 8

.

.

 in.

 in.

c in.)

 

h

t
c

w top

⎛

⎝
⎜

⎞

⎠
⎟ =

=

21 8

0 125

174

.

.

 in.

 in.

 yp = 10 1. in.

 
h y tp p fc= −( )2

 

= −(
=

2 10 1

19 6

.

.

 in.

 in.

c in.)

From Table 5-4:
 Myt = 2,500 kip-in.
 Myc = 2,980 kip-in.
 Mp = 3,090 kip-in.

Using the AISC Specifi cation Table B4.1, determine the limiting width-thickness ratios for compact and noncompact webs in 
fl exure for singly symmetric I-shaped sections: 

 λ pw =

21 8
19 6

29 000
55

0 54
3 090
2 500

.

.
,

.
,
,

in.
in.

ksi
ksi

kip-in.
kip-inn.

⎛

⎝
⎜

⎞

⎠
⎟ −

=

0 09

76 6

2

.

.

⎡

⎣
⎢

⎤

⎦
⎥

 (Spec. Table B4.1)

 λrw = 131 from previous calculation

Therefore, the web is noncompact at mid-length [84.0 < (hc/tw = 129) < 131] and slender at the top [131 < (hc/tw = 174)] of the 
unbraced length.

The values of the web plastifi cation factor, Rpc, and the web buckling factor, Rpg, will be required to calculate the nominal fl exural 
strength for the limit state of lateral-torsional buckling. At the mid-length, the web is noncompact; therefore, use from Section 
5.4 of the this Design Guide and Section F4 of the AISC Specifi cation:

 R
M

M

M

M

M

M
pc

p

yc

p

yc

pw

rw pw

p

y

= − −
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

−
−

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

≤1
λ λ

λ λ c

 (5.4-5, Spec. Eq. F4-9b)

 
= − −

⎛

⎝
⎜

⎞

⎠
⎟

2 130

2 120

2 130

2 120
1

,

,

,

,

kip-in.

kip-in.

kip-in.

kip-in.

1129 84 0

131 84 0

2 130

2 120

−
−

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥ ≤.

.

,

,

kip-in.

kip-in.

 = 1.00 ≤ 1.00, therefore Rpc = 1.00

 Rpg = 1.0 because the web is noncompact at this location.

At the top, the web is slender; therefore,

 
R

M

M
pc

p

yc

= ≤1 00.

 
1 00

3 090

2 980
1 04.

,

,
.≤ =kip-in.

kip-in.
, therefore Rpc = 1.00

 R
a

a

h

t

E

F
pg

w

w

c

w y

= −
+

−
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ ≤1

1 200 300
5 7 1 0

,
. .  (5.4-6, Spec. Eq. F5-6)

031-138_DG25_Ch5.indd   123 6/21/11   1:47 PM



124 / FRAME DESIGN USING WEB-TAPERED MEMBERS / AISC DESIGN GUIDE 25

where

a
h t

b t
w

c w

fc fc

=  ≤ 10.0 (5.4-7)

=
( )

( = ≤
21 8

1 45 10 0
.

. . ,
in. 0.125in.

6.00 in.
therefore use 

c in.) aw == 1 45.

Therefore, 

 R
a

a

h

t

E

F
pg

w

w

c

w y

= −
+

−
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ ≤1

1 200 300
5 7 1 0

,
. .  (5.4-6, Spec. Eq. F5-6)

 

= −
+ ( ) −

⎛

⎝
⎜1

1 45

1 200 300 1 45

21 8

0 125
5 7

29 000

55

.

, .

.

.
.

,in.

in.

ksi

ksi⎜⎜
⎞

⎠
⎟⎟

= 0 961.

Using the provisions of Section 5.4.3 for members with a single linear taper and no plate changes, determine the nominal fl exural 
strength, Mn, of the member for the limit state of lateral-torsional buckling.

First, using AISC Specifi cation Section F4, determine the elastic lateral-torsional buckling stress, FeLTB, with Cb = 1 for the loca-
tion of maximum fl exural stress using properties at the middle of the unbraced length.

 F
E

L

r

J

S h

L

r
eLTB C

b

t

xc o

b

t
b

( ) =
⎛

⎝
⎜

⎞

⎠
⎟

+
⎛

⎝
⎜

⎞

⎠
⎟=1

2

2

2
1 0

1 0 078
.

.
π

 (5.4-10, Spec. Eq. F4-5)

where
ho = +

=

18 0 0

18 3

.5(c in. + R in.)
.

in.

in.

.

hc = 16.1 in. from previous calculation

a
h t

b t
w

c w

fc fc

=  (5.4-7)

=
( )

(
=

16 1

1 07

.

.

in. 0.125in.

6.00 in. c in.)

r
b

h

d
a

h

h d

t
fc

o
w

o

=

+
⎛

⎝
⎜

⎞

⎠
⎟12

1
6

2
 (5.4-11)

=

+ ( ) ( )
(

6 00

12
18 3
18 5

1
6

1 07
18 0

18 3 18 5

2

.

.

.
.

.

. .

in.

in.
in.

in.

in. in.))
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

= 1 61. in.

Sxc = 38 6. in.  from Table 5-43

J = 0, because the web is slender over some portion of this unbraced length.

Therefore,

 F
E

L

r

J

S h

L

r
eLTB Cb

b

t

xc o

b

t

( ) =
⎛

⎝
⎜

⎞

⎠
⎟

+
⎛

⎝
⎜

⎞

⎠
⎟=1

2

2

2
1 0

1 0 078
.

.
π  (5.4-10, Spec. Eq. F4-5)
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=
⎛

⎝
⎜

⎞

⎠
⎟

+1 0 29 000

144
1 61

1 0 078
0

38 6 1

2

2

. ( ,

.

.
.

π ksi)

in.
in.

in.

in.

4

3 88 3

144

1 61

2

. .in.

in.

in.( )
⎛

⎝
⎜

⎞

⎠
⎟

 

=
⎛

⎝
⎜

⎞

⎠
⎟

=

1 0 29 000

144
1 61

35 8

2

2

. ( ,

.

.

π ksi)

in.
in.

ksi

Find location of maximum fl exural compression stress.

For the case of a linear web taper and a linear moment taper to zero at the small end (small P-δ effects), the maximum fl exural 
stress will always occur at the deep end (top).

LRFD ASD

f
M

S
rmax

r

xc

=

= 1 800

54 2 3

,

.

kip-in.

in.

 = 33.2 ksi

f
M

S
rmax

r

xc

=

= 1 200

54 2 3

,

.

kip-in.

in.

 = 22.1 ksi

Calculate the elastic buckling multiplier, γeLTB Cb
( ) =1 , with Cb = 1:

LRFD ASD

γeLTB C

eLTB C

rmax
b

b
F

f
( ) =

( )
=

=

1

1

 
= 35.8 ksi

 33.2 ksi 
 

 = 1.08

γeLTB C

eLTB C

rmax
b

b
F

f
( ) =

( )
=

=

1

1

 
=  

35.8 ksi

22.1 ksi
 

 = 1.62

Check LTB strength at top of unbraced length.

Calculate the nominal fl exural strength due to the limit state of lateral-torsional buckling at the top of the unbraced length. Select 
the equation for calculation of the nominal fl exural strength, Mn, based on the following ratio, where f fr rmax= :

LRFD ASD

γeLTB Cb
r

y

f

F

( )
=

( )=1
1 08 33 2

55

. . ksi

ksi

 = 0.652

γeLTB Cb
r

y

f

F

( )
=

( )=1
1 62 22 1

55

. . ksi

ksi

 = 0.651

Note that the difference between LRFD and ASD is due to rounding. Use ASD value of 0.651.
When Sxt/Sxc ≥ 0.7, 

 FL = 0.7Fy (5.4-14, Spec. Eq. F4-6a)

and therefore,
F

F
L

y

= 0 7.
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Because 
γeLTB Cb

r

y

L

y

f

F

F

F

( )
<=1  and the web is slender, use Equation 5.4-20.

  
M C R f S R Mn b pg eLTB Cb

r xc pg yc= ( ) ≤
=

γ
1  (5.4-20)

where Cb is determined using Section 5.4.1 and the moment diagram in Figure 5-9 is determined as follows:

LRFD ASD

f0 0 0= . ksi

f
M

S
mid

r

xc

=

 
= 

900

38 6 3

kip-in.

in..

 = 23.3 ksi

f
M

S
r

xc
2 =

 
= 

1 800

54 2 3

,

.

kip-in.

in.

 = 33.2 ksi

Because 23 3
0 ksi + 33.2 ksi

2
. ksi >

f f fmid1 2
2= −  (5.4-2)

 = ( ) −2 23 3 33 2. .ksi ksi

 = 13.4 ksi

C
f

f

f

f
b = − +

⎛

⎝
⎜

⎞

⎠
⎟ ≤1 75 1 05 0 3 2 31

2

1

2

2

. . . .
 

(5.4-1)

 
= − +

⎛

⎝
⎜

⎛

⎝
⎜

⎞

⎠
⎟

⎞

⎠
⎟1 75 1 05

13 4

33 2
0 3

13 4

33 2

2

. .
.

.
.

.

.

ksi

ksi

ksi

ksi

 = 1.38 < 2.3

f0 0 0= . ksi

f
M

S
mid

r

xc

=

 
= 

600

38 6 3

kip-in.

in..

 = 15.5 ksi

f
M

S
r

xc
2 =

 
= 

1 200

54 2 3

,

.

kip-in.

in.

 = 22.1 ksi

Because 15 5
0 ksi + 22.1 ksi

2
. ksi >

f f fmid1 22= −  (5.4-2)

 = ( ) −2 15 5 22 1. .ksi ksi

 = 8.90 ksi

C
f

f

f

f
b = − +

⎛

⎝
⎜

⎞

⎠
⎟ ≤1 75 1 05 0 3 2 31

2

1

2

2

. . . .

 

(5.4-1)

 
= − +

⎛

⎝
⎜

⎛

⎝
⎜

⎞

⎠
⎟

⎞

⎠
⎟1 75 1 05

8 90

22 1
0 3

8 90

22 1

2

. .
.

.
.

.

.

ksi

ksi

ksi

ksi

 = 1.38 < 2.3

Therefore, the nominal fl exural strength for the limit state of lateral-torsional buckling at the top of the member is,

LRFD ASD

M C R f S R Mn b pg eLTB C r xc pg yc
b

= ( ) ≤

= ( )( )
=

γ
1

1 38 0 961 1 08 33 2. ( . ) . . ksi

0.961 2 980, kip-in.≤ ( )
54.2 3in.( )

 = ≤2 580, kip-in. 2,860 kip-in.

 Use Mn = 2 580, kip-in.

M C R f S R Mn b pg eLTB C r xc pg yc
b

= ( ) ≤

= ( )( )
=

γ
1

1 38 0 961 1 62 22 1. ( . ) . . ksi

0.961 2 980, kip-in.≤ ( )
54.2 3in.( )

 = ≤2 570, kip-in. 2,860 kip-in.

 Use Mn = 2 570, kip-in.
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Check the strength ratio at the top of the member.

LRFD ASD

M

M

M

M
r

c

r

b n

=
φ

 
= ( )

1 800

0 90 2 580

,

. ,

kip-in.

kip-in.

 = 0.775

M

M

M

M
r

c

b r

n

=
Ω

 
=

( )1 67 1 200

2 570

. ,

,

kip-in.

kip-in.

 = 0.780

Check the lateral-torsional buckling strength at the middle of the unbraced length. The fl exural stress at this location is,

LRFD ASD

f
M

S
r

r

xc

=

= 
900

38 6 3

kip-in.

in..

 = 23.3 ksi

f
M

S
r

r

xc

=

= 
600

38 6 3

kip-in.

in..

 = 15.5 ksi

Select the equation for calculation of the nominal fl exural strength, Mn, based on the following ratio:

LRFD ASD

γeLTB C r

y

b
f

F

( )
=

( )=1 1 08 23 3

55

. . ksi

ksi

 = 0.458

γeLTB C r

y

b
f

F

( )
=

( )=1 1 62 15 5

55

. . ksi

ksi

 = 0.457

Note that the difference between LRFD and ASD is due to rounding. Use ASD value of 0.457.

Because 
γeLTB C r

y

L

y

b
f

F

F

F

( )
≤=1 , and the member has a slender web, use Equation 5.4-21. The nominal fl exural strength for the limit 

state of lateral-torsional buckling at the middle of the unbraced length is,

  M C f S R Mn b eLTB C r xc pc yc
b

= ( ) ≤
=

γ
1

 (5.4-21)

where
Cb = 1.38 (calculated previously) 
(γeLTB)cb=1 = 1.08 for LRFD; 1.62 for ASD (calculated previously)
fr = 23.3 ksi for LRFD; 15.5 ksi for ASD (calculated previously)
Sxc = 38.6 in.3 from Table 5-4
Rpc = 1.0 (determined previously)
Myc = 2,120 kip-in. from Table 5-4
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Therefore:

LRFD ASD

M C f S R Mn b eLTB C r xc pc yc
b

= ( ) ≤

= ( )( )( )
=

γ
1

31 38 1 08 23 3 38 6. . . .ksi in. ≤≤ ( )1 00 2 120. , kip-in.

 = ≤1 340, kip-in. 2,120 kip-in.

Use Mn = 1,340 kip-in. 

M C f S R Mn b eLTB C r xc pc yc
b

= ( ) ≤

= ( )( )( )
=

γ
1

31 38 1 62 15 5 38 6. . . .ksi in. ≤≤ ( )1 00 2 120. , kip-in.

 = ≤1 340, kip-in. 2,120 kip-in.

Use Mn = 1,340 kip-in. 

Check the strength ratio at the middle of the unbraced length.

LRFD ASD

 

M

M

M

M
r

c

r

b n

=
φ

= ( )
900

0 90 1 340

kip-in.

kip-in.. ,

 = 0.746

 

M

M

M

M
r

c

b r

n

=
Ω

=
( )1 67 600

1 340

.

,

kip-in.

kip-in.

 = 0.748

The lateral-torsional buckling strength is controlled by the top of the unbraced length because the strength ratio is greater at 
the top.

Check the following local limit states at the middle and top of the unbraced length: tension fl ange yielding, compression fl ange 
local buckling, and tension fl ange rupture at the bolt holes.

Tension Flange Yielding

According to AISC Specifi cation Section F4.4 and Section 5.4 of this Design Guide, when Sxt < Sxc, the nominal fl exural strength 
for the limit state of tension fl ange yielding is determined as follows:

 
M R M

R F S

n pt yt

pt y xt

=

=  
Spec

( )
( .

.

Eq. F4-14)

5 4-25

where
Sxt = 31.7 in.3 from Table 5-4

At the middle of the unbraced length, the web plastifi cation factor, Rpt, is dependent on the following slenderness parameters:

 

λ =

=

h

t
c

w

129 
 λ pw = 84 0.

 λrw = 131

Because λ λpw
c

w
rw

h

t
< ≤ , use Equation 5.4-27.

 R
M

M

M

M

M

M
pt

p

yt

p

yt

pw

rw pw

p

y

= − −
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

−
−

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

≤1
λ λ

λ λ t

 (5.4-27)

 
= − −

⎛

⎝
⎜

⎞

⎠
⎟

2 130

1 740

2 130

1 740
1

,

,

,

,

kip-in.

kip-in.

kip-in.

kip-in.

1129 84 0

131 84 0

2 130

1 740

−
−

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥ ≤.

.

,

,

kip-in.

kip-in.

 = 1.01 ≤ 1.22; therefore, use 1.01
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Therefore,

 M R F Sn pt y xt=  (5.4-25)

 

= ( )( )
=

1 1 55 ksi 31 7 in

1,76  kip-in.

3. . .0

0

Determine the nominal fl exural strength at the top of the unbraced length. The web plastifi cation factor, Rpt, is dependent on the 
following slenderness parameters:

 
h

t
c

w

= 174 (calculated previously)

 λrw = 131

From Section 5.4.5, for 
h

t
c

w
rw> λ ,

 Rpt = 1.0

and from Table 5-4, at the top,
 Sxt = 45.5 in.3

Therefore,

 Mn = Rpt Fy Sxt  (5.4-25)
 = 1.0(55 ksi)(45.5 in.3) 
 = 2,500 kip-in.

Compression Flange Local Buckling

Determine the nominal fl exural strength, Mn, at the middle of the unbraced length using the limit state of compression fl ange local 
buckling. The selection of the appropriate equation is dependent on the fl ange compactness. 

 

b

t

f

f2

6 00

9 60

= (
=

.

.

in.

2

      

c in.)

From Table B4.1 of the AISC Specifi cation for fl exure in fl anges of singly symmetric I-shaped sections,

 

λ pf
y

E

F
=

=

=

0 38

0 38
29 000

55

8

.

.
,

.

compact flange limit

ksi

ksi

     773    

  λrf
c

L

k E

F
= 0 95.  slender fl ange limit

where

k
h

t

c

w

=

=

= <

4

4

18 0
0 125

0 333 0 35 0

   
in.
in.

   therefore use 3

.
.

. . ; . 55
 FL = 38.5 ksi (calculated previously)

 (5.4-24)
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Therefore,

 

λrf
c

L

k E

F
=

=

0 95

0 95
0 35 29 000

38 5

15 4

.

.
. ( ,

.

.

ksi)

ksi

=    

Because 8.73 < 9.58 < 15.4, the compression fl ange is noncompact; therefore, use Equation 5.4-22. The nominal fl exural strength 
for the limit state of compression fl ange local buckling at the middle of the unbraced length is,

 M R R M R M F S

b

t

E

F

k E

F

E

F

n pg pc yc pc yc L xc

f

f y

c

L y

= − −( )
−

−

⎛
2

0 38

0 95 0 38

.

. .
⎝⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

 (5.4-22)

 

= ( ) − ( ) − (1 0 1 00 2 120 1 00 2 120 38 5 38 6. . , . , . .kip-in. kip-in. ksi in.3 ))⎡⎣ ⎤⎦
−
−

⎛
⎝⎜

⎞
⎠⎟

⎧
⎨
⎩

⎫
⎬
⎭

=

9 60 8 73

15 4 8 73

2 040

. .

. .

,    kip-in.

Determine the nominal fl exural strength for the limit state of compression fl ange local buckling at the top of the unbraced length. 
The selection of the appropriate equation is dependent on the compression fl ange compactness.

 

b

t

f

f2

6 00

9 60

= (
=

.

.

in.

2

     

c in.) 

 λpf = 8.73 compact fl ange limit (previously calculated)

  

k
h

t

c

w

=

=

= <

4

4

24 0
0 125

0.289 0.35

   
in.
in.

   therefore, use

.
.

;   350.

 (5.4-24)

 

λrf
c

L

k E

F
=

=
( )

0 95

0 95
0 35 29 000

38 5

.

.
. ,

.

 slender flange limit

ksi

kksi

=    15 4.

Because 8.73 < 9.60 < 15.4, the compression fl ange is noncompact; therefore, use Equation 5.4-22. The nominal fl exural strength 
for the limit state of compression fl ange local buckling at the top of the unbraced length is,

 M R R M R M F S

b

t

E

F

k E

F

E

F

n pg pc yc pc yc L xc

f

f y

c

L y

= − −( )
−

−

⎛
2

0 38

0 95 0 38

.

. .
⎝⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

 (5.4-22)
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where
 FL = 38.5 ksi
 Myc = 2,980 kip-in. from Table 5-4
 Rpg = 0.961 (previously calculated)
 Rpc = 1.0 (previously determined)
 Sxc = 54.2 in.3 from Table 5-4

 M R R M R M F S

b

t

E

F

k E

F

E

F

n pg pc yc pc yc L xc

f

f y

c

L y

= − −( )
−

−

⎛
2

0 38

0 95 0 38

.

. .
⎝⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

 (5.4-22)

 

= ( ) − ( ) − (0 961 1 0 2 980 1 0 2 980 38 5 54 2. . , . , . .kip-in. kip-in. ksi in.3 ))⎡⎣ ⎤⎦
−
−

⎛
⎝⎜

⎞
⎠⎟

⎧
⎨
⎩

⎫
⎬
⎭

=

9 60 8 73

15 4 8 73

2 750

. .

. .

,     kip-in.

Tension Flange Rupture

Determine the nominal fl exural strength for the limit state of tensile rupture of the tension fl ange due to the bolt holes at the girt 
location.

From AISC Specifi cation Section F13.1, if F A Y F Au fn t y fg< , then the tension fl ange rupture limit state applies,

where
 Yt = 1.0 for Fy /Fu ≤ 0.8

 

F

F

Y

y

u

t

=

= < =

55

0 786 0 8 1 0

ksi

70 ksi

therefore. . ; .

 

Afg = ( )
=

6 00

1 31

.

.

in. R in.

     in.2

 

Afn = − ( ) +( )
=

1.31 R in. n in. z in.

0 982.

in. 2

     in.2

Thus,

 
70 0 982 1 0 55 1 31ksi in. ksi in.2 2. . .( ) < ( )( )

 68.7 kips < 72.1 kips; therefore, the tension fl ange rupture limit state applies

The nominal fl exural strength, Mn, at the holes in the tension fl ange is,

 M
F A

A
Sn

u fn

fg
x=  (Spec. Eq. F13-1)

where

 Sxt  = 35.0 in. at the girt, from Table 5-33

Therefore,

 

Mn =
( )

=

70 0 982

1 31
35 0

1 840

ksi in.

in.
in.

     kip-in.

2

2
3

.

.
.

,
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Maximum fl exural strength ratios 

For a summary of strength ratios to be used in combined strength checks in Example 5.8, see below.

Summary of Flexural Strengths

Lateral-Torsional Buckling
Value at Top of Unbraced Length Governs

LRFD ASD

 

M

M

M

M
r

c

r

b n

=
φ

= ( )
1 800

0 90

,

.

kip-in.

2,580 kip-in.

 = 0.775

 

M

M

M

M
r

c

b r

n

=
Ω

=
( )1 67 1 200

2 570

. ,

,

kip-in.

kip-in.

 = 0.780

Tension Flange Local Yielding at Top

LRFD ASD

M

M
r

c

= ( )
1 800

0 90

,

.

kip-in.

2,500 kip-in.

 = 0.800

M

M
r

c

=
( )1 67 1 200. , kip-in.

2,500 kip-in.

 = 0.802

Tension Flange Rupture at Girt

LRFD ASD

M

M
r

c

= ( )
1 120

0 90

,

.

kip-in.

1,840 kip-in.

 = 0.676

M

M
r

c

=
( )1 67 750. kip-in.

1,840 kip-in.

 = 0.681

Lateral-Torsional Buckling at Mid-Length

LRFD ASD

M

M
r

c

= ( )
900

0 90

kip-in.

1,340 kip-in..

 = 0.746

M

M
r

c

=
( )1 67 600

1 340

.

,

kip-in.

kip-in.

 = 0.748

Tension Flange Yielding at Mid-Length

LRFD ASD

M

M
r

c

= ( )
900

0 90

kip-in.

1,760 kip-in..

 = 0.568

M

M
r

c

=
( )1 67 600. kip-in.

1,760 kip-in.

 = 0.569

Tension fl ange yielding governs.

 Example 5.8—Combined Axial Compression and Flexure

Given:

Check the strength of the member used in Examples 5.6 and 5.7 for combined axial compression and fl exure, using the required 
and available strengths from those examples.

Evaluate using AISC Specifi cation Section H1.1, H1.3 (if permitted), and H2.
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Axial strength ratios from Example 5.6:

In-Plane Flexural Buckling
LRFD ASD

 

P

P

P

P
r

c

r

c n

=
φ

= ( )
11 3

0 90

.

.

kips

200 kips

 = 0.0628

 

P

P

P

P
r

c

c r

n

=
Ω

=
( )1 67 7 50

200

. . kips

kips

 = 0.0626
Out-of-Plane Constrained-Axis Torsional Buckling

LRFD ASD

P

P
r

c

= ( )
11 3

0 90

.

.

kips

122 kips

 = 0.103

P

P
r

c

=
( )1 67 7 50

122

. . kips

kips

 = 0.103

Flexural strength ratios from Example 5.7:

Lateral-Torsional Buckling at Top
LRFD ASD

 

M

M

M

M
r

c

r

b n

=
φ

= ( )
1 800

0 90

,

.

kip-in.

2,580 kip-in.

 = 0.775

 

M

M

M

M
r

c

b r

n

=
Ω

=
( )1 67 1 200

2 570

. ,

,

kip-in.

kip-in.

 = 0.780
Tension Flange Local Yielding at Top

LRFD ASD

M

M
r

c

= ( )
1 800

0 90

,

.

kip-in.

2,500 kip-in.

 = 0.800

M

M
r

c

=
( )1 67 1 200. , kip-in.

2,500 kip-in.

 = 0.802
Tension Flange Rupture at Girt

LRFD ASD

M

M
r

c

= ( )
1 120

0 90

,

.

kip-in.

1,840 kip-in.

 = 0.676

M

M
r

c

=
( )1 67 750. kip-in.

1,840 kip-in.

 = 0.681
Lateral-Torsional Buckling at Mid-Length

LRFD ASD

M

M
r

c

= ( )
900

0 90

kip-in.

1,340 kip-in..

 = 0.746

M

M
r

c

=
( )1 67 600

1 340

.

,

kip-in.

kip-in.

 = 0.748
Tension Flange Yielding at Mid-Length

LRFD ASD

M

M
r

c

= ( )
900

0 90

kip-in.

1,760 kip-in..

 = 0.568

M

M
r

c

=
( )1 67 600. kip-in.

1,760 kip-in.

 = 0.569
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Solution A:

Use AISC Specifi cation Section H1.1, and the worst case in-plane and out-of-plane ratios for axial and fl exure when checking 
the unbraced length.

 Out-of-plane constrained-axis torsional buckling controls axial strength.

 
P

P
r

c

= <0 103 0 2. . ; therefore, use Equation 5.5-1b.

  
P

P

M

M

M

M
r

c

rx

cx

ry

cy2
1 0+ +

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ ≤ .  (5.5-1b, Spec. Eq. H1-1b)

Tension fl ange yielding at the top of the unbraced length controls fl exural strength.

LRFD ASD

0 103

2
0 800 0 0 852

.
. .+ +( ) = 0 103

2
0 802 0 0 854

.
. .+ +( ) =

Tension Flange Rupture

From Example 5.7, F A Y F Au fn t y g< ; therefore, check tension fl ange rupture.

Check bolt holes at girt. 
Calculate axial tensile strength.

 

Ag = +( ) + ( )
=

6 00 0 313 0 219 19 5 0 125

5 63

. . . . .

.

in. in. in. in. in.

    in..

 

A A U

A d t

e n

g h f

=

= − +( )⎡⎣ ⎤⎦
= −

    

    in.2

4 1.0

5.63 2 n in. + z in.  0.219 in.

z

.

.

1 0

5 30    in.2

( )⎡⎣ ⎤⎦
=

LRFD ASD

 P F Ac t u e= φ

= ( )( )0 75 70. ksi 5.30 in.2

 = 278 kips

 
P

F A
c

u e

t

=
Ω

=
( )70 ksi 5.30 in.

2.00

2

 = 186 kips

 M
F A

A
Snx

u fn

fg
xt=   (5.5-3)

 = 1,840 kip-in.

031-138_DG25_Ch5.indd   134 6/21/11   1:47 PM



AISC DESIGN GUIDE 25 / FRAME DESIGN USING WEB-TAPERED MEMBERS / 135

LRFD ASD

 M Mcx b nx= φ  (5.5-3)

 = ( )0 90 1 840. , kip-in.

 = 1,660 kip-in.

 M
M

cx
nx

b

=
Ω

 (5.5-3)

 
= 1 840, kip-in.

1.67

 = 1,100 kip-in.

On the fl ange in fl exural tension:

 
P

P

M

M
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c
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+ ≤ 1 0.  (5.5-2)

− + =11 3
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1 120
0 634

. ,
.

kips
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kip-in.

1,660 kip-in.

On the fl ange in fl exural tension:
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M
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c
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cx

+ ≤ 1 0.  (5.5-2)

− + =7 50

186

750
0 641

.
.

kips

kips

kip-in.

1,100 kip-in.

Solution B:

As discussed in Section 5.5.2, it is not recommended that AISC Specifi cation Section H1.3 be applied to members other than 
doubly symmetric compact sections.

Solution C:

Using AISC Specifi cation Section H2, select locations to check and use required and available stresses calculated from section 
properties at those locations.

Check at bottom of unbraced length.

h = 12.0 in., Ag = 4.69 in.2

Axial strength is governed by out-of-plane constrained torsional buckling.

LRFD ASD
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Because there is no fl exural stress at the bottom
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F
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+ + ≤ 1 0.   (5.5-5)

Because there is no fl exural stress at the bottom
1 60

15 6
0 0 0 103

.

.
.

ksi

ksi
+ + =

Check at middle of unbraced length.
h = 18.0 in., Ag = 5.44 in.2, Sxc = 38.6 in.3, Sxt = 31.7 in.3
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Check fl ange in fl exural compression.

Axial strength is governed by constrained torsional buckling. Flexural strength is governed by lateral-torsional buckling.

LRFD ASD
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Check fl ange in fl exural tension.

Axial strength is governed by constrained torsional buckling (as earlier). Flexural strength is governed by tension fl ange yielding.

LRFD ASD
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Check at top of unbraced length.
h = 24.0 in., Ag = 6.19 in.2, Sxc = 54.2 in.3, Sxt = 45.5 in.3
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Check fl ange in fl exural compression.

Axial strength is governed by constrained torsional buckling. Flexural strength is governed by lateral-torsional buckling.
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Check fl ange in fl exural tension.

Axial strength is governed by constrained torsional buckling (as determined previously). Flexural strength is governed by tension 
fl ange yielding.
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Tension fl ange rupture.

Check the tension fl ange at the bolt holes using Equation 5.5-6.

h = 19.5 in., Ag = 5.63 in.2, Sxt = 35.0 in.3

LRFD ASD

 
f

P

A
ra

r

g

=

 

= −

= −

11 3

2 01

.

.

kips

5.63in.

ksi

2

from above, Pc = 278 kips

 
F

P

A
ca

c

g

=

 

=

=

278

49 4

kips

5.63in.

ksi

2

.

 
f

M

S
rbx

rx

x

=

 

=

=

1 120

32 0

3

,

.

kip-in.

35.0 in.

ksi

from above, Mcx = 1,660 kip-in.

F
M

S
cbx

cx

x

=

 

=

=

1 660

47 4

,

.

kip-in.

35.0 in.

ksi

3

 

f

F

f

F
ra

ca

rbx

cbx

+ ≤ 1 0.
 

(5.5-6)

− + =2 01

49 4

32 0

47 4
0 634

.

.

.

.
.

ksi

ksi

ksi

ksi

 
f

P

A
ra

r

g

=

 

= −

= −

7 50

1 33

.

.

kips

5.63in.

ksi

2

from above, Pc = 186 kips

 
F

P

A
ca

c

g

=

 

=

=

186

33 0

kips

5.63in.

ksi

2

.

 
f

M

S
rbx

rx

x

=

 

=

=

750

21 4

3

kip-in.

35.0 in.

ksi.

from above, Mcx = 1,100 kip-in.

F
M

S
cbx

cx

x

=

 

=

=

1 100

31 4

,

.

kip-in.

35.0 in.

ksi

3

 

f

F

f

F
ra

ca

rbx

cbx

+ ≤ 1 0.
 

(5.5-6)

− + =1 33

33 0

21 4

31 4
0 641

.

.

.

.
.

ksi

ksi

ksi

ksi

031-138_DG25_Ch5.indd   138 6/21/11   1:47 PM



AISC DESIGN GUIDE 25 / FRAME DESIGN USING WEB-TAPERED MEMBERS / 139

The following sections present topics relevant to the design 
of frames that are partially or entirely composed of tapered 
members. The emphasis is on confi gurations common in the 
metal building industry but this information remains appli-
cable to fabricated members that are similar.

Considerable freedom is given to designers regarding the 
means of structural analysis, and it is beyond the scope of 
this Guide to fully explore all of the possibilities. The fol-
lowing sections discuss many of the issues that affect the 
accuracy of fi rst- and second-order analysis, but they do not 
prescribe a detailed procedure to be followed. Regardless of 
the analysis approach selected, the accuracy of the analysis 
technique should be confi rmed by comparison with the re-
sults of benchmark problems such as those provided in Ap-
pendix C.

 6.1 FIRST-ORDER ANALYSIS OF FRAMES

As a practical matter, the vast majority of frames with ta-
pered members are analyzed using computer software rather 
than by manual techniques. Although prismatic members are 
accurately modeled with ordinary beam elements in modern 
direct stiffness computer software, tapered members must 
either be modeled with specialized tapered beam elements 
or subdivided into a larger number of shorter prismatic el-
ements to accurately represent the behavior of the tapered 
member. 

In a design production environment, frames with tapered 
members are usually analyzed using specialized software 
that incorporates an element type specifi cally developed 
to model tapered members. These elements typically make 
use of numerical integration techniques to provide good but 
approximate results for member stiffness coeffi cients and 
fi xed-end forces. The accuracy of these elements varies and 
depends on the element formulation and the fi neness with 
which the element is internally subdivided in the numerical 
integration. Examples with accurately calculated stiffness 
coeffi cients are provided in Appendix C for reference.

Alternatively, a tapered member may be modeled in a 
planar matrix analysis using a series of short prismatic ele-
ments, as shown in Figure 6-1, with properties represent-
ing the average properties of the tapered member within the 
length of each short element. The accuracy of such modeling 
improves with a fi ner subdivision of the tapered member and 
eventually converges to the behavior of the tapered member 
with a suffi ciently refi ned number of segments.

Several additional computer modeling issues arise from 
the properties of tapered members with unequal fl ange sizes. 

The centroidal axis of such a member is not located at the 
mid-depth. This axis shift should be accounted for in the 
computer model. Furthermore, a tapered I-shaped member 
with unequal fl ange areas does not have a straight centroidal 
axis. The axis curves toward the heavier fl ange.

Figure 6-2 illustrates a typical case. With a taper angle 
of 15°, the curvature of the axis shown is equivalent to an 
out-of-straightness of approximately L /600. When an axial 
compressive force, P, is present in the member, this curva-
ture causes additional bending moments of P times the offset 
of the curved axis relative to a straight chord between the 
member ends. These additional moments cause additional 
transverse defl ections toward the heavier fl ange, which in-
creases the second-order P-δ moments along the member 
length. The use of numerous shorter segments to model the 
member will account for this curvature if the nodes at the 
end of each element are located at the element centroid, 
rather than along a straight line between the member ends.

At section transitions where tapered I-shaped members 
with different fl ange sizes meet in the model, there is usually 
an offset in the theoretical location of the centroidal axes, as 
shown in Figure 6-3. These offsets can be as much as several 
inches. This discontinuity can be handled by introducing a 
short link element between the centroids, or by shifting each 
axis slightly to join at a common location.

 Chapter 6
Frame Design

Fig. 6-1. Tapered member modeled as 
a series of prismatic segments.

Fig. 6-2. Curved centroidal axis of 
singly symmetric tapered member.
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Primary members in metal building frames are typically 
connected together using bolted end-plate connections. For 
analysis purposes, typical full-height end-plate connections 
are usually considered to be fully restrained (type FR) mo-
ment connections. Partial-height or thin end-plate connec-
tions are sometimes used as simple framing connections and 
are thus treated as pinned in the analysis model, even though 
they contribute some rotational stiffness to the system. 

Beam shear stress levels are typically low in metal build-
ing frames due to the relatively deep sections used. Conse-
quently, the effects of shear deformations are not generally 
included in the analysis. Designers should be aware of situ-
ations in which shear deformations could contribute sub-
stantially to defl ections, such as in the case of short, heavily 
loaded beam spans, and account for them where signifi cant.

A modeling assumption must be made regarding the stiff-
ness of the region of moment connections where rafters and 
columns intersect. These shear panels are normally consid-
ered to be as stiff as or somewhat stiffer than the members 
framing into them, assuming the panels are not subject to 
shear buckling. Possible modeling techniques include con-
tinuing the member stiffness of the intersecting members to 
the work point or incorporating a more advanced approach 
using calculated panel stiffnesses. Given the large stiffness 
and short lengths of these regions, the effects of these choic-
es on the frame defl ections and the overall force distribution 
are usually minor. The assumption of a rigid panel zone may 
be somewhat unconservative.

Although the use of fi xed-base columns can result in cost 
savings for tapered-member frames, for reasons of overall 
project economy, column base conditions are usually de-
signed as simply supported. Partial restraint of column base 
plates can be included in the analysis model through the use 
of linear or nonlinear springs as appropriate, if the moment-
rotation response can be quantifi ed. Eroz et al. (2008) pro-
vide detailed suggestions for modeling simply supported 
column base details using an equivalent elastic-perfectly 
plastic rotational spring element.

In some cases, particularly frames with long spans and 
short columns, the distribution of forces and moments may 
be sensitive to lateral support movements caused by the 
thrust reactions at the outside column bases. During the 
design process, metal building designers are typically not 
aware of the details of the foundations that will be used to 

support the frames and thus generally assume the supports 
to be rigid in the vertical and lateral directions in the com-
puter analysis. For this reason, it is advisable for designers 
of foundations to keep stresses low in elements that resist 
lateral movement of the footings (Newman, 2004).

 6.2 SECOND-ORDER ANALYSIS OF FRAMES

Although obtaining accurate fi rst-order analysis results is not 
diffi cult with some attention to the details noted in Section 
6.1, considerably more care in the choice of method, details 
of implementation, and structural modeling is required to 
obtain accurate second-order analysis results.

The fi rst measure of success of a second-order analysis 
is the accuracy of the calculated nodal displacements and 
member end forces. All numerical methods of calculating 
second-order displacements and forces become increasingly 
inaccurate at higher levels of axial loading. For structures 
with relatively high levels of axial load relative to the side-
sway buckling load of the structure or member, the infl u-
ence of both P-Δ and P-δ effects is signifi cant and must be 
included by some means to obtain accurate nodal displace-
ments and member end forces. Depending on the type of 
second-order method being used, this can be done by either 
subdividing the beam and column elements into a suffi cient 
number of smaller elements or by the direct inclusion of P-δ 
effects in the formulation of the structural stiffness matrix. It 
is recommended that accuracy checks be focused on nodal 
displacements, because the resulting member end forces and 
member unity checks tend to be as accurate as, or more accu-
rate than, the displacements from which they are calculated. 

Accurate P-δ results for the member forces between 
nodes must also be obtained, either directly from the analy-
sis model or from the application of an appropriate amplifi er. 
The familiar B1 factor (see Equation 4.6-3a) is an example 
of such an amplifi er. For prismatic members, “exact” closed-
form P-δ formulations are readily available for several load-
ing conditions with idealized pinned or fi xed end supports. 
For web-tapered members, practical exact solutions are not 
available even for these idealized end conditions. Therefore, 
other approaches must be used.

When using the effective length method (ELM), subdivi-
sion of members such that αPr /Peℓ for each element is less 
than or equal to 0.02 will result in internal member forces 
suffi ciently accurate that no B1 amplifi er or other calculation 
of the element internal P-δ moments is needed. Similarly, 
when using the direct analysis method (DM), the appropriate 
limit is αPr /Peℓ  < 0.02, where Peℓ  is the element buckling 
load based on idealized simply supported end conditions 
and using the reduced elastic stiffnesses of the DM analysis 
model. Several suggested procedures are given in Sections 
4.6.1 and 4.6.2 for cases where this level of subdivision is 
not desirable and the internal element P-δ moments are not 
otherwise accounted for in the element calculations.

Fig. 6-3. Centroidal axis offset at plate change.
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Several solution methods for second-order analysis have 
been developed and are in use. Engineers must be aware 
of the limitations of the software they are using. Thorough 
benchmarking is essential to verify the number of elements 
per member necessary for worst-case member end condi-
tions (see Appendix C), and then this number of elements 
per member can be employed with confi dence for general 
analysis. Those programming second-order analysis features 
in software must also take into account issues of effi ciency 
in implementation and computation. The following is a brief 
summary of the limitations and implementation issues for 
several widely used second-order analysis procedures.

 6.2.1 P-Δ-Only Analysis

Many of the commonly used second-order analysis proce-
dures, such as the fi ctitious lateral load method, the itera-
tive gravity load method, and the negative stiffness method 
(Chen and Lui, 1991), include only the effects of P-Δ. Most 
of these specialized methods were developed to provide con-
venient solutions for rectangular framing systems and have 
not been proven to be accurate with the full range of geom-
etries encountered in buildings. However, Eurocode 3 (CEN, 
2005) permits the use of such methods for sloped rafter 
frames when the roof slope is not steeper than 26°, although 
it requires αPr < 0.09PeL in the rafters using their full on-
slope length from column-to-column for the calculation of 
PeL. When conducting an analysis with the DM, one should 
ensure αPr < 0.09PeL. For cases that violate the 0.09PeL or 
0.09PeL limit, the rafter stiffness may be calculated conser-
vatively in the manner discussed in Section 6.2.5. P-Δ-only 
solutions using the iterative gravity load method or direct 
inclusion of the P-Δ geometric stiffness terms in the struc-
tural stiffness matrix are suffi ciently general to handle metal 
building frame geometries without the roof slope limitation.

At higher levels of axial load relative to the member or 
frame buckling load encountered in some frames, P-Δ meth-
ods may not produce accurate nodal defl ections or member 
end forces unless the beams and columns are subdivided 
into a suffi cient number of shorter-length elements. In some 
cases, such subdivision will occur naturally as a result of 
accommodating locations where taper or plate changes oc-
cur. Otherwise, additional nodes and elements must be in-
troduced to maintain a reasonable level of accuracy. The 
following recommendations ensure that an accuracy of 5% 
for the nodal defl ections and 3% for the internal forces will be 
achieved at load levels up to 68% of the elastic buckling load 
in all sidesway cases and up to 66% of the elastic buckling 
load in all nonsway cases for the most demanding loadings 
and boundary conditions. These maximum limits corre-
spond to sidesway displacement ratios (Δ2nd /Δ1st) larger than 
3.0, and nonsway member transverse displacement ratios 
(δ2nd /δ1st) and end rotation ratios (θ2nd /θ1st) larger than 2.0, 
where Δ, δ and θ are calculated using nominal stiffness for 

ELM and reduced stiffness for DM. If a higher or lower limit 
for the axial load level is desired, these recommendations 
can be adjusted accordingly by studies similar to those con-
ducted by Guney and White (2007). It is assumed that inter-
nal P-δ effects along the element lengths are handled using 
the procedures discussed in item 2 of Section 4.6.1 (ELM) or 
item 2 of Section 4.6.2 (DM).

Table 6-1 may be used as a guide to selecting subdivi-
sion intervals for P-Δ-only solutions in lateral-load resisting 
columns with nominally simply supported base conditions. 
Given a calculated value for αPr /PeL or αPr /PeL, or equiva-
lently α/γeL or α / γeL, the required number of P-Δ elements 
per member is selected such that the maximum limit on 
αPr /PeL = α/γeL or αPr /PeL = α / γeL in the fi rst column of 
the table is not exceeded. Although Table 6-1 indicates that 
three elements per member are required to obtain the desired 
analysis accuracy at αPr = 0.15PeL when using the nominal 
elastic structural stiffness, the AISC Specifi cation permits 
the use of a single element up to this level when using the 
reduced elastic stiffness with the DM. It is anticipated that 
future editions of the AISC Specifi cation may require con-
sideration of P-δ effects on the lateral displacements for 
αPr > 0.05PeL in stories with columns having simply sup-
ported base conditions when the DM is used.

Table 6- 2 provides similar information to Table 6-1 
for cases where the lateral-load resisting members have 

Table 6-1. Member Subdivision for Sway Columns

with Simply Supported Bases, P-ΔΔ Analysis

Maximum

αPr/PeLor

αPr/PeL

Required

Number

of Elements

Maximum

α Pr/Pcr or

α Pr/Pcr

0.05 1 0.20

0.12 2 0.50

0.17 3 0.68

Table 6-2. Member Subdivision for Sway Columns 

with Top and Bottom Rotational Restraint, 

P-ΔΔ Analysis

Maximum

α Pr/PeLor

α Pr/PeL

Required

Number

of Elements

Maximum

α Pr/Pcr or

α Pr/Pcr

0.12 1 0.24

0.23 2 0.24

0.31 3 0.38

0.47 4 0.51

0.58 5 0.62

0.68 6 0.68
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substantial rotational restraint at both ends, e.g., via fi xed 
bases and/or FR moment connections to adjacent beams or 
rafters. Restraint conditions with an equivalent rotational 
stiffness of at least 1.5 EI′/L with the ELM, or 1.5 (0.8EI′/L) 
with the DM, are assumed for a member end to be consid-
ered to have substantial rotational end restraint, where I′ is 
defi ned with Equation 4.5-4.

Table 6-3 provides equivalent information for the subdivi-
sion of rafters and columns braced against translation at their 
top and bottom.

The third column in each of these tables gives the maxi-
mum value of αPr /Pcr (or αPr /Pcr) that can be achieved 
while maintaining 5% accuracy in the nodal displacements 
and 3% accuracy in the internal forces, where Pcr is the axial 
force at elastic system buckling using the ELM-based nomi-
nal elastic structure stiffness and Pcr is the corresponding ax-
ial force using the DM-based reduced elastic stiffness. The 
maximum αPr /Pcr (or αPr /Pcr) values do not necessarily cor-
respond to the same critical loading and boundary conditions 
as the maximum αPr /PeL (or αPr /PeL) values. The required 
number of elements should be selected based on the member 
αPr /PeL (or αPr /PeL) values listed in the fi rst column of 
the tables.

Sway columns that support substantial nonsway (gravity) 
moments should satisfy both Tables 6-2 and 6-3.

In some cases, the subdivision required to accommodate 
changes in fl ange and web plates and tapers will prove suffi -
cient to satisfy the preceding requirements. If not, additional 
nodes and elements must be introduced into the model. More 
extensive discussions and background to the above tables 
can be found in Guney and White (2007).

Tables 6-1 through 6-3 are based predominantly on stud-
ies of prismatic frame members having a wide range of load-
ings and end conditions. They are applied to nonprismatic 
geometries assuming that the elastic stiffness of the nonpris-
matic members is represented with negligible error in the 
second-order analysis.

 6.2.2  Analysis Using Elements that Include Both 
P-Δ and P-δ Effects in the Formulation

Accurate second-order analysis results can be achieved with 
fewer elements by accounting for P-Δ and P-δ effects di-
rectly in the element structural stiffness matrices. This can 
be accomplished by formulating the frame element stiffness 
equations accounting for the effects of both P-δ and P-Δ mo-
ments. In this case, additional element geometric stiffness 
terms are included with the element P-Δ stiffness terms at 
each step of the analysis. Using these types of elements, the 
structure stiffness depends in detail on the specifi c level of 
axial force in each element of the model. This can be con-
trasted with the P-Δ behavior of rectangular frames, where 
the sidesway stiffness depends only on the total vertical load 
in each story, rather than on the distribution of this load to 
the different columns. Nevertheless, because each term of 
the element stiffness matrix is proportional to the element 
axial load, the solution converges as soon as the axial loads 
in the members are stabilized. The element axial forces are 
suffi ciently converged after the fi rst-order solution for most 
practical metal building frames. An approach in which the 
iterations are halted after the second iteration is described as 
the “two cycles iterative method” by Chen and Lui (1991).

Using geometric stiffness terms based on cubic element 
displacements, all sway columns subjected primarily to end 
forces will generate defl ection errors of no more than 5% 
and moment errors of no more than 3% at ratios of αPr /
Pcr or αPr /Pcr up to 0.83 without any subdivision. Nonsway 
members need not be subdivided into more than two ele-
ments to achieve αPr /Pcr or αPr /Pcr up to 0.66, compared 
with as many as 11 elements for worst-case problems us-
ing P-Δ-only solutions having αPr/PeL or αPr / PeL > 1.0 (see 
Table 6-3). Use of a single element is suffi cient for nonsway 
members in all cases when αPr /PeL < 0.17 using the nominal 
elastic stiffness with the ELM or αPr / PeL < 0.17 using the 
reduced elastic stiffness with the DM.

Although the effects of P-δ on P-Δ are included in the pre-
vious types of analysis, it is still necessary to use a method 
such as that recommended in item 2 of Section 4.6.1 (with 
the ELM) or item 2 of Section 4.6.2 (with the DM) to de-
termine accurate second-order moments between nodes, un-
less αPr /Peℓ or αPr /Peℓ is less than or equal to 0.02 for each 
element. If Equations 4.6-2 or 4.6-5 are used to calculate 
the element internal moments between the nodes, αPr /Peℓ or 
αPr  /Peℓ must be less than or equal to 0.13 to ensure moment 
errors of no more than 3% in all cases.

Table 6-3. Member Subdivision for Rafters and

 Nonsway Columns, P-ΔΔ Analysis

Maximum

α Pr/PeLor

α Pr/PeL

Required

Number

of Elements

Maximum

α Pr/Pcr or

α Pr/Pcr

0.05  1 0.05

0.20  2 0.12

0.36  3 0.19

0.50  4 0.24

0.61  5 0.31

0.67  6 0.38

1.18  7 0.45

1.35  8 0.51

2.12  9 0.57

2.42  10 0.62

2.65  11 0.66
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In general, the results from second-order analysis soft-
ware using the preceding types of frame elements can vary 
widely due to differences in implementation within global 
nonlinear frame analysis solution procedures. Therefore, it 
is essential that engineers thoroughly benchmark the specifi c 
software utilized in their design practice. Appendix C of this 
Guide provides a number of useful benchmark problems 
with an emphasis on second-order analysis of web-tapered 
frame members.

 6.2.3 Alternative Amplifi ed First-Order Analysis

White, Surovek and Kim (2007a) and White, Surovek and 
Chang (2007b) have demonstrated that second-order results 
can be obtained from a fi rst-order analysis by using larger 
notional loads (or more specifi cally, by applying P-Δ shear 
forces corresponding to amplifi ed story drifts). This ap-
proach provides a means of calculating credible second-order 
results without the need for software capable of second-
order analysis. The procedure provides results with accu-
racy comparable to or better than other amplifi ed fi rst-order 
analysis techniques and is recommended as an alternative 
to fi rst-order analysis with B1/B2 amplifi cation. The fi rst-
order method (FOM) in AISC Specifi cation Section C2.2b 
makes use of a streamlined form of this analysis procedure. 
However, the more general procedure outlined in White et 
al. (2007a, 2007b) gives better accuracy and may be used 
for either ELM or DM second-order analyses. Similar to 
fi rst order analysis with B1-B2 amplifi cation, this approach 
is based on a rectangular frame idealization. Therefore, 
its use must be subjected to limitations such as specifi ed 
in Eurocode 3 (CEN, 2005) and discussed earlier in 
Section 6.2.1.

 6.2.4 Required Accuracy of Second-Order Analysis

Historically, a 5% maximum unconservative error has been 
considered acceptable in the development and calibration of 
the AISC beam-column strength interaction equations rela-
tive to refi ned inelastic benchmark solutions (ASCE, 1997). 
In actuality, the ELM beam-column strength interaction 
equations used with an exact second-order elastic analysis 
can result in unconservative errors in the beam-column 
strength interaction unity checks as high as 8% relative to 
rigorous inelastic solutions for doubly symmetric I-shaped 
members subjected to major-axis bending (Maleck and 
White, 2003). Also, it is important to recognize that the er-
rors in calculated internal moments are generally larger than 
the errors in the beam-column unity checks, and the errors 
in the calculated nodal displacements are usually larger than 
the errors in element internal nodal moments. Furthermore, 
it is useful to recognize that design standards typically 
permit implicit errors in some approximate second-order 
analysis solutions that are larger than 10% under practical 
loading conditions. For example, for a simply supported 

prismatic beam subjected to uniform primary bending mo-
ment, the AISC Specifi cation B1 equation gives a moment 
amplifi cation of
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whereas the exact solution for the maximum second-order 
elastic moment amplifi cation is (Chen and Lui, 1987)
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At αPr /PeL = αPr /Pe1 = α /γeL = 0.67, where the exact 
AF = 3.52, B1 is only equal to 3.0, an unconservative error 
of 14.8%. For use with the ELM, this level of accuracy is 
considered acceptable. However, the DM is generally more 
sensitive to analysis errors because the overall in-plane 
fl exural buckling effects in sway frames are moved from the 
calculation of γe, Pe and/or KL in the determination of Pc in 
the ELM to the calculation of the amplifi ed member internal 
moments in the DM. In fact, in cases where the DM design is 
based on Pn = QPy, the in-plane fl exural buckling effects are 
moved entirely from the determination of Pc to the calcula-
tion of the amplifi ed member internal moments. Therefore, a 
smaller tolerance on the unconservative error in the internal 
second-order forces is needed for a DM second-order analy-
sis. Also, it is important to emphasize that the DM second-
order analysis results must be accurate compared with exact 
solutions using the reduced elastic stiffnesses. With these at-
tributes in mind, the Commentary to Section 7.3 of the AISC 
Specifi cation Appendix 7 suggests that estimated moment 
and defl ection amplifi cation values should both be accurate 
to within 3% of exact solutions at exact amplifi cation levels 
of more than 2.5.

Given that the internal nodal moments generally are ob-
tained from matrix analysis solutions with equal or better 
accuracy than the nodal displacements, and the internal 
beam-column unity checks are generally obtained with 
equal or better accuracy than the internal moments, the au-
thors suggest that a 5% tolerance on nodal displacements is 
acceptable for practical second-order analysis solutions.

Although the AISC Commentary suggests that an accu-
racy of 3% is desired in an analysis for the DM, Section 
7.3 of AISC Specifi cation Appendix 7 permits second-order 
analysis without the consideration of P-δ effects on P-Δ 
at load levels as high as αPr = 0.15 PeL. The correspond-
ing lateral displacement errors can be as high as 34% in the 
DM reduced stiffness model in extreme cases at this load 
level (e.g., a fi xed-end cantilever or a simply supported sway 
column with complete rotational fi xity at its top). However, 
the corresponding maximum unity check error in the beam-
column strength interaction equations is limited to 8% in 
prismatic major-axis bending benchmarks. This maximum 
unity check error is consistent with the previously noted 
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maximum error implicitly tolerated by the ELM, when the 
unity checks based on an exact second-order analysis are 
compared with rigorous inelastic solutions. Nevertheless, the 
preceding upper-bound errors are slightly higher than might 
be considered acceptable. It is anticipated that future ver-
sions of the AISC Specifi cation may require consideration 
of P-δ effects on the lateral displacements for αPr > 0.05PeL 
in stories with columns having simply supported base condi-
tions when the DM is used. Conversely, for columns having 
rotational restraint at both ends, Table 6-2 indicates that P-δ 
effects can be neglected in the calculation of the lateral dis-
placements and member sidesway end moments when αPr 
< 0.12PeL.

 6.2.5 Stiffness Reduction

As discussed in Section 4.6.2, when using the DM it is nec-
essary to reduce the stiffness of members contributing to the 
lateral stability of the structure by at least 20% in the second-
order analysis. It is the intent of the AISC Specifi cation that 
this reduction be applied to all elements contributing to 
the stability of the structure, including moment connected 
beams, fi xed column bases, etc. This reduction should not 
be applied when calculating fi rst-order results, e.g., when 
checking service load defl ections.

As a practical matter, it is recommended that the stiffness 
of all members be reduced by the same percentage for sec-
ond-order analysis by adjusting the value of the modulus of 
elasticity, E. In addition to the simplicity of implementation, 
this has the advantage of avoiding unintended side-effects in 
the analysis that result from this stiffness reduction, such as 
differential column shortening.

For a DM or ELM second-order analysis by an amplifi ed 
fi rst-order analysis approach (e.g., B1-B2), or for the calcu-
lation of the in-plane γe for columns rigidly connected to 
rafters using story-stiffness-based equations, further reduc-
tion in the rafter stiffnesses is necessary in some situations 
(AISC, 2005a). Where the axial load in the rafters exceeds 
0.05PeL (i.e., α / γeL > 0.05) using the nominal elastic stiff-
ness, the overall stiffness of the rafters and the rotational 
restraint that the rafter provides at the top of a column is 
signifi cantly reduced due to P-δ effects. If a second-order 
analysis is conducted using a frame element that incorpo-
rates both P-Δ and P-δ effects, or if a general P-Δ analysis 
is conducted using the element discretization recommended 
in Table 6-3, this stiffness reduction is properly captured and 
no other adjustment is necessary. However, when using an 
amplifi ed fi rst-order analysis or any P-Δ analysis based on 
a rectangular frame idealization for second-order load-dis-
placement calculations with the ELM, or for calculation of 
γe values, and when using the FOM, the base equations do 
not consider the infl uence of axial force in the rafters on the 
rafter stiffnesses. Therefore, to account for these effects, it is 
recommended that the EI of the rafters within a given span 

be reduced as follows for the calculation of the sidesway de-
fl ections, sidesway stiffnesses, and sidesway amplifi cation 
factors in these cases:
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where Pe Los( . )0 5  is calculated using 0.5Los, Los is the full on-
slope length of the rafters between the columns, and EI is 
the basic fl exural rigidity used in the analysis. The use of 
L = 0.5Los in this calculation accounts for the fact that the 
rafters tend to be deformed in double-curvature bending in 
providing sidesway rotational restraint to the tops of the col-
umns. Similarly, when using an amplifi ed fi rst-order analy-
sis approach for the structural analysis with the DM, one 
should use
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in the rafters when their axial force αPr is greater than 
0.05PeL, or equivalently when α/ γeL > 0.05.

As previously stated, the factor 0.8τb in Equation 6.2-1b is 
easily accounted for in most software by reducing E. How-
ever, one should never use a reduced value of E in the mem-
ber strength equations in the AISC Specifi cation Chapters E 
through G. Component resistances should always be calcu-
lated using a nominal E = 29,000 ksi.

 6.2.6 Load Levels for Second-Order Analysis

Second-order analysis is nonlinear by nature. Two important 
consequences arise:

1. Valid load combination results cannot be obtained by 
superimposing the results of second-order analyses 
conducted on individual load cases. A separate sec-
ond-order analysis must be conducted for each load 
combination. However, if one uses an amplifi ed fi rst-
order elastic analysis to determine the second-order 
internal forces, the results from the separate fi rst-
order analyses can be superposed to determine total 
fi rst-order forces. Subsequently, the amplifi cation 
factors for each load combination can be determined 
and applied to the total fi rst-order internal displace-
ments and/or forces.

2. Second-order analyses for use with either ELM or 
DM design must be conducted at ultimate load levels 
to obtain accurate second-order responses, even if the 
design is performed using ASD. Because ultimate 
load levels are not defi ned for ASD, the ASD loading 
combinations, including the notional loads, must be 
increased by a factor of 1.6 prior to conducting the 
analysis. The member forces from the second-order 
analysis are then divided by 1.6 to give required 
strengths for use with the ASD strength equations. 
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The factor of 1.6 is equivalent to the average load 
factor that would occur in LRFD combinations for 
structures with 100 percent live load, and is there-
fore somewhat conservative compared with realistic 
LRFD combinations. When an amplifi ed fi rst-order 
analysis is employed, the 1.6 factor can be included 
explicitly in the amplifi cation factor expressions, and 
therefore one need not factor the forces up by 1.6 and 
then divide by 1.6 in this case.

LRFD load combinations are ultimate level loadings; there-
fore, the load combinations should not be factored up further 
prior to analysis. The results of the second-order LRFD anal-
ysis should be used directly in the member strength checks.

 6.2.7 Notional Loads

Notional loads are fi ctitious lateral loads that account for a 
nominal out-of-plumbness of the frame. They are calculated 
as a percentage of the vertical load in the load combination 
being analyzed in the ELM and DM or as a function of 
the vertical load and fi rst-order sidesway defl ections in the 
FOM. The required magnitudes and conditions under which 
they must be added to other lateral loads are discussed in 
Section 4.6.

For simple rectangular tiered structures, the total notional 
load at each fl oor or roof level is calculated using the sum-
mation of the vertical load introduced at that level. One must 
not calculate the notional loads at each level from the ac-
cumulation of load at that level. The notional load is deter-
mined only from the load introduced at that level.

For more complicated situations, the application of no-
tional loads can sometimes seem less straightforward. When 
in doubt about the application of notional loads, keep in mind 
that they are intended to simulate the effect of an initial uni-
form out-of-plumbness. Consideration of an out-of-plumb 
version of the frame will usually make clear the appropriate 
calculation of the notional loads.

All notional loads are applied in the same direction in 
any given load combination. For gravity-only load combi-
nations that cause a net sidesway, the notional loads should 
be applied in the direction that increases the net sidesway. 
For structures with multiple stories or levels and in which 
the sidesway deformations are in different directions in dif-
ferent stories or levels, it is necessary to include a pair of 
load combinations, separately considering the notional loads 
associated with a uniform out-of-plumbness in each direc-
tion. For load combinations in which notional loads are 
combined with lateral loads, the notional loads should be 
applied in the same direction as the net applied lateral loads. 
For gravity-only combinations, if there is zero net fi rst-order 
sidesway for a load combination, such as the case of a sym-
metrically loaded symmetrical structure, load combinations 
with notional loads in both directions should be considered 

separately, unless any symmetry in the design is enforced by 
other means.

For ASD designs using the ELM or DM, the notional 
loads must be calculated from the vertical loads including 
the 1.6 factor required for second-order analysis.

The total resultant horizontal force at any level due to the 
notional loads is actually a fi ctitious shear force that causes 
the same P-Δo moments as the physical vertical loads acting 
through the initial out-of-plumb displacements, Δo. There-
fore, the net horizontal reactions due to the notional loads 
may be subtracted from the analysis results. However, as a 
practical matter, this may be more trouble than it is worth. 
Physical P-Δo shear forces do exist in columns and/or di-
agonal bracing members of many structures, although the 
sum of these shear forces across all the members of a story 
must be zero. The true distribution of these internal forces 
can be determined only by explicit modeling of the out-of-
plumb geometry. For instance, in Figure 4-1, the lateral load 
resisting column has an additional shear force PΔo/L due to 
any initial out-of-plumbness Δo of the right-hand leaning 
column. This is balanced by the horizontal component of the 
axial force in the leaning column. In cases that may have 
signifi cant physical internal P-Δo shear forces, the notional 
load approximation tends to give a reasonable estimate of 
the largest internal P-Δo shear forces. In lateral-load resist-
ing frames, these P-Δo shear forces tend to be small (but not 
necessarily insignifi cant) compared with the other shear and 
axial force effects.

The following example illustrates the calculation of no-
tional loads on a single-slope building shown in Figure 6-4, 
assuming an initial out-of-plumbness of L/300.
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 6.2.8 Explicit Out-of-Plumbness

In lieu of notional loads, the frame may be modeled using 
a uniform initial out-of-plumbness. For gravity-only load 
combinations, the out-of-plumbness should be in the direc-
tion of the fi rst-order sway for the load combination under 
consideration. This can be determined by a preliminary 
fi rst-order analysis using the plumb geometry. For structures 
with multiple stories or levels and in which the sidesway 
deformations are in different directions in different stories or 
levels, it is necessary to include a pair of load combinations, 
separately considering the infl uence of a uniform initial 
out-of-plumbness in each direction. If the structure has no 
sidesway for a particular gravity load combination—e.g., a 
symmetrical structure with symmetrical loading—separate 
load combinations with out-of-plumbness in both directions 
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should be considered unless any symmetry of the design is 
enforced by other means. For load combinations involving 
lateral loads, the out-of-plumbness should be in the direction 
of the lateral loads.

The magnitude of out-of-plumbness may be set using the 
guidelines in Section 4.4.3, with the height at each column 
top measured from its base. The following example illus-
trates the calculation of out-of-plumbness for a single-slope 
building shown in Figure 6-5, assuming an initial out-of-
plumbness of L/300.
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Applying the out-of-plumbness values to the column tops as 
shown will result in small changes in rafter analysis lengths 
between column tops. This can be avoided by moving all 
the nodes laterally by 0.0033H, including the nodes at the 

column bases, where H is the height above the lowest eleva-
tion on the structure.

The AISC Specifi cation explicitly permits the use of out-
of-plumbness in lieu of notional loads with the DM, but does 
not explicitly state that this is allowed for the ELM. Because 
proper application of explicit out-of-plumbness will result 
in second-order defl ections and forces equivalent to or more 
accurate than those obtained using notional loads, this ap-
proach can be used for the ELM also.

 6.2.9 Lean-On Structures

Lean-on structures are elements of the structure that support 
gravity loads but that depend on the frame for lateral sta-
bility. Common examples in low-rise construction include 
portions of mezzanines, lean-tos, and concrete wall panels 
that are attached to the frame for lateral support, but whose 
gravity load is not carried by the frame. These elements in-
crease the second-order defl ections and forces and must be 
accounted for in the second-order analysis.

When using a general-purpose analysis package, lean-on 
structures can be accounted for by fully modeling them with 
the other portions of the frame. Alternatively, in many cases 
a complex lean-on structure may be simplifi ed to a single 
dummy column that carries the gravity and is to the primary 
frame by a link.

Fig. 6-4. Calculation of notional loads.

Fig. 6-5. Calculation of explicit out-of-plumbness.
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The elements that must be properly modeled include:

1. The height of the lean-on structure column(s).

2. The magnitude of the vertical load that is laterally 
stabilized by the frame.

3. The notional loads contributed by the lean-on 
structure, or the out-of-plumbness if explicit out-of-
plumbness is being modeled.

The following example illustrates the calculation of the dead 
load gravity and notional loads along with reasonable mod-
eling simplifi cations for a gable frame laterally supporting a 
lean-to and concrete wall panels (see Figure 6-6). The frame 
tributary width is 25 ft, and the assumed out-of-plumbness 
is L/500. The vertical and notional loads shown are those in 
addition to the loads normally applied in a fi rst-order analy-
sis, contributed by the lean-to and tilt-up panels. Half the 
weight of the tilt-up panels is used because the centroid of 
the weight of the panels is at half the height of the outside 
columns rather than at the roof level. Y2 only includes the 
right half of the lean-to roof dead load, because it is assumed 
that the left half and its notional load (N3) would have al-
ready been included in the analysis at the location where the 
lean-to attaches to the gable frame. The vertical and notional 

loads from the lean-to and wall panels at the right side of the 
structure have been combined onto one fi ctitious column to 
simplify the model. From AISC Specifi cation Appendix 7.3,
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Fig. 6-6. Calculation of notional loads for lean-on structures.
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 6.3 ANALYSIS OF SINGLE-STORY 
CLEAR-SPAN FRAMES

Single-story clear-span frames, particularly those with un-
supported gables, differ in a few important ways from the 
rectangular frames presumed in the majority of the AISC 
Specifi cation analysis provisions.

 6.3.1 Behavior of Single-Story Clear-Span Frames

The stability behavior of single-story clear-span frames is 
distinctly different from the stability behavior of multi-story 
building frames or multi-bay modular building frames be-
cause of the P-Δ and P-δ effects from the axial compression 
in the rafters. In single-story clear-span frames, gravity load 
restraining bending moments are developed at the knees of 
the frame by axial thrusts from the foundation. These axial 
thrusts are typically of a similar magnitude to the column 
axial forces. Conversely, in modular frames, the interior 
columns support a large portion of the gravity loads on the 
rafters and reduce the magnitude of the restraining bending 
moments in exterior columns. Also, in multi-story frames, 
the column shear forces induced by the bending of the col-
umns under gravity loads act in opposite directions above 
and below each fl oor. These opposing shear forces tend to 
cancel with one another such that the axial force in the fl oor 
beams is relatively small. In addition, the span-to-depth ratio 
of fl oor beams tend to be smaller than that of rigid frame 
rafters. This is because fl oor loadings tend to be larger than 
ordinary roof loads; also, fl oor beams tend to be stiffer to sat-
isfy fl oor defl ection and fl oor vibration requirements. Due to 
the preceding attributes, the second-order effects in ordinary 
fl oor beams of multi-story frames and rafters of modular 
frames are usually small enough that they do not affect the 
stability behavior of the frame.

 6.3.2 In-Plane Design Length of Rafters

The in-plane axial design length of beams or rafters in rect-
angular frames traditionally has been taken as the length 
between columns. In a span with an unsupported gable, a 
common industry practice has been to take the design length 
as the distance from column to ridge if there is a suffi cient 
change in the pitch across the ridge. A suffi cient change in 
the pitch is one that ensures that the gable cannot defl ect 
downward enough to permit the rafter to buckle downward 
in a single half-wave between column supports. Industry 
practice has varied on this limit, down to as low as a roof 
pitch of 4 on 12 on each side of the ridge. A small study 
conducted in conjunction with the development of this 
Guide showed that the reduction in rafter effective length for 
gable frames is primarily due to end rotation restraint from 
the columns rather than from the change in rafter pitch at the 
ridge. Consequently, when designing frames using the ELM, 
it is recommended that any reductions in the effective length 

below the full on-slope length between columns be based on 
a stability analysis of the rafter incorporating the restraint 
from the supporting columns. See Appendix B for a discus-
sion of several rational approaches to calculating buckling 
parameters for rafters.

When using the DM, the recommendations discussed in 
items 4a through 4c of Section 4.6.2 should be followed. The 
DM is generally better suited for characterizing the true sta-
bility behavior of rafters, because it focuses directly on an 
appropriate second-order load-defl ection analysis account-
ing for the reduced stiffness at ultimate load levels and over-
all geometric imperfection effects where they are important. 

 6.3.3 Sidesway Calculations for Gabled Frames

It is necessary to calculate the ratio of Δ2nd /Δ1st to establish 
the applicability of the three AISC stability methods, to 
determine the applicability of the K = 1 provisions for the 
ELM, to determine whether notional loads are additive to 
lateral loads in the DM, and to implement the B1-B2 method, 
when it is used. For gable frames, some adjustment of this 
calculation is necessary to avoid underestimation of the 
second-order effects. The eaves of a frame with a gable 
where the ridge is not directly supported by a column will 
spread in opposite directions under gravity loading as the 
gable defl ects vertically. Symmetrical defl ections of this 
type do not contribute to a sidesway instability of the frame 
and should not be considered as frame sway when evaluating 
the magnitude of second-order effects. The average sway at 
the column tops weighted by the gravity load in each column 
is recommended for calculation of the overall net fi rst- and 
second-order sidesway displacements as shown in the fol-
lowing example.

Calculate Δ2nd /Δ1st referring to Figure 6-7.
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A calculation of Δ2nd/Δ1st using the unaveraged maximum 
displacements would signifi cantly underestimate the second-
order effects as shown here.
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 6.4 SERVICEABILITY CONSIDERATIONS

With the exception of seismic story drift, serviceability of 
low-rise structures has traditionally been evaluated using 
fi rst-order elastic defl ections. These are compared with em-
pirical defl ection standards that historically have provided 
for adequate serviceability when used as limits on fi rst-order 
defl ection. In most metal building frames, underestimation 
of the true second-order defl ections under service loads does 
not cause problems because the preceding arbitrary limits 
are well within tolerances that would result in any signifi -
cant structural or nonstructural damage. For this reason, it is 

recommended that fi rst-order defl ections continue to be used 
with these types of traditional serviceability limits.

One possible exception is the calculation of story drift 
where collision with an adjacent structure is a possibility. 
In this case, it would be prudent to use the second-order de-
fl ections for a more accurate assessment. Also, when there 
are specifi c structural or nonstructural elements that may be 
damaged at service load levels if specifi c defl ection limits 
are exceeded, it is recommended that the second-order ser-
vice-load defl ections be calculated.

Fig. 6-7. Calculation of Δ2nd /Δ1st for gabled frames.
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STABILITY DESIGN OF FRAMES COMPOSED 
OF TAPERED AND GENERAL NONPRISMATIC 
I-SHAPED MEMBERS

This bibliography summarizes the results of numerous re-
search efforts aimed at the stability design of nonprismatic 
I-shaped members and the design of frames composed of 
nonprismatic I-shaped members. The research studies range 
primarily from the early 20th century up to the current time 
(October 2010). The references are arranged into the follow-
ing categories and are discussed in chronological order in 
each of these categories:

• Column elastic fl exural buckling
• Elastic fl exural buckling of rectangular frames
• Elastic fl exural buckling of gabled frames
• Elastic fl exural buckling of crane buildings
• Column inelastic fl exural buckling and design strength
• Planar fi rst- and second-order elastic beam-column and/

or frame analysis (planar analysis)
• Column constrained-axis torsional buckling
• Beam and beam-column elastic lateral-torsional buckling
• Beam and beam-column design resistances
• General behavior and design of frames composed of ta-

pered I-shaped members

Column Elastic Flexural Buckling

Ostwald (1910). “Klassiker der exakten Wissenschaften” 
No. 175, Leipzig.

German translation of Euler’s derivation of differential equa-
tion of the elastic deflection curve for columns with con-
tinuously varying cross section along their length. Euler 
discussed columns of various shapes, including a truncated 
cone and pyramid.

Lagrange (1770–1773). “Sur la figure des colonnes,” Misc. 
Taurinensia, Vol. 5. (Reprinted in “Oeuvres de Lagrange,” 
Vol. 2, Gauthier-Villars, Paris, 1868, pp. 125–170.)

Investigated the stability of elastic bars bounded by a surface 
of revolution of the second degree.

Vianello, L. (1898). “Graphische Untersuchung der Knick-
festigkeit gerader Stäbe, Zeitschrift des Vereines deutscher 
Ingenieure, 42, p. 36.

Introduced the method of successive approximations into the 
field of engineering. Demonstrated a graphical procedure for 
the solution of column buckling problems.

Bairstow, L. and Stedman, E.W. (1914). “Critical Loads for 
Long Struts of Varying Sections,” Engineering, 98, p. 403.

Calculated elastic flexural buckling loads assuming a varia-
tion of the moment of inertia according to a power of the 
distance along the bar.

Morley, A. (1914). Engineering, 97, p. 566 (and Vol. 104, 
p. 295, 1917).

Calculated elastic flexural buckling loads assuming a varia-
tion of the moment of inertia according to a power of the 
distance along the bar

Bleich, F. (1924). “Theorie und Berechnung der eisernen 
Bruchen,” Springer, Berlin, p. 136.

Provided approximate solutions based on the energy method 
for some shapes of columns.

Dinnik, A.N. (1914). I svest. Gornogo Inst., Ekaterinoslav.
Dinnik, A.N. (1916). Vestnik Ingenerov, Moscow.
(The principal results of these papers were translated into 
English in the following papers:
Dinnik, A.N. (1929). “Design of columns of varying cross-

section,” ASME Transactions, AMP-51-11, Vol. 51, 
McGraw-Hill, New York, NY, pp. 165–171.

Dinnik, A.N. (1932). “Design of columns of varying cross-
section,” ASME Transactions, AMP-54-16, Vol. 54, 
McGraw-Hill, New York, NY, pp. 105–109.)

One of the first to analytically solve the differential equa-
tion of buckling for tapered members. Published formulas 
and coefficients of stability enabling elastic buckling load 
calculations without solving the governing differential equa-
tions. The solutions were based on assuming various para-
bolic laws for the stiffness in the end portions of the column. 

Timoshenko, S.P. (1936). Theory of Elastic Stability, 
McGraw-Hill, New York, NY, 518 pp.

Provided the analytical solution for the elastic flexural buck-
ling of a simply supported column subjected to an end load 
and a concentrated axial load at an intermediate location 
along its length as well as a step in the cross section at the 
location of the intermediate axial load. Provided analyti-
cal solutions for the elastic flexural buckling of a prismatic 
cantilever column subjected to distributed axial loads and 
combined end and distributed axial loads. Provided analyti-
cal solutions for the elastic flexural buckling of simply sup-
ported columns subjected to a constant axial compression 
with a stepped cross section composed of a prismatic center 
length having a larger moment of inertia than the end 
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prismatic lengths. Provided an analytical solution for the 
elastic flexural buckling of a cantilever column with a mo-
ment of inertia that varies according to a power of the dis-
tance along the member length, subjected to an internal axial 
force that also varies according to a power of the distance 
along the member length. Discussed energy method solu-
tions for more general cases. Discussed the method of suc-
cessive approximations for determination of column elastic 
flexural buckling loads and presented a graphical solution 
for the buckling of a simply supported stepped column sub-
jected to constant axial compression using this method.

Newmark, N.M. (1943). “A Numerical Procedure for Com-
puting Deflections, Moments and Buckling Loads,” ASCE,
Transactions, 108, 1161–1188.

Showed very effective practical solutions of column flexural 
buckling loads using the method of successive approxima-
tions along with finite difference expressions. The method 
is applicable to bars with any variation in cross section and 
with varying axial load. Showed example applications of this 
method to prismatic and stepped beams with various load-
ing and support conditions. One of the examples shown is a 
propped cantilever, illustrating the application of the method 
to a statically indeterminate problem.

Salvadori, M.G. (1951). “Numerical Computation of Buck-
ling Loads by Finite Differences,” ASCE, Transactions, 
116, 590–625.

Published numerical solutions of buckling problems taken 
from Timoshenko (1936) using the finite difference method 
as a method of successive approximations. Provided detailed 
discussions of numerical solution procedures based on the 
method of successive approximations for column flexural 
buckling problems. These developments were based largely 
on the research of Newmark (1943).

Bleich, F. (1952). Buckling Strength of Metal Structures, 
McGraw-Hill, New York, NY, 508 pp.

Provided solutions for elastic buckling of simply supported 
I-shaped columns with linear or parabolic taper, assum-
ing an approximate variation of the moment of inertia as a 
power function along the length of the member. Provided 
an overview of the method of successive approximations 
in his Sections 27 and 28 (pp. 81–91), including a proof of 
its convergence. In addition, provided detailed discussions 
of numerical solution procedures utilized with the method 
of successive approximations for column flexural buckling 
problems. These developments were based largely on the re-
search of Newmark (1943).

Timoshenko, S.P. and Gere, J.M. (1961). Theory of Elastic 
Stability, McGraw-Hill, New York, NY, 541 pp.

Provided the solution for constrained-axis lateral-torsional 
buckling of axially loaded members. Provided the various 

column buckling solutions from Timoshenko (1936) for 
nonprismatic columns and columns subjected to distributed 
loads. Expanded on the original discussion of the method of 
successive approximations provided by Timoshenko (1936) 
using the numerical procedures recommended by Newmark 
(1943).

Gere, J.M. and Carter, W.O. (1962). “Critical Buckling 
Loads for Tapered Columns,” Journal of the Structural 
Division, ASCE, 88(ST1), 1–11.

Solved the differential equation of buckling for tapered col-
umns using Bessel functions and numerical integration.

Butler, D.J. and Anderson, G.C. (1963). “The Elastic Buck-
ling of Tapered Beam-Columns,” Welding Journal Re-
search Supplement, Vol. 42, No. 1.

and
Butler, D.J. (1966). “Elastic Buckling Tests on Laterally and 

Torsionally Braced Tapered I-Beams,” Welding Journal 
Research Supplement, Vol. 45, No. 1.

Tested tapered I-shaped beams and channel sections tapered 
in both the web and flanges as cantilever beam-columns. The 
primary focus was on the elastic stability of the members 
and the bracing requirements.

Girijavallabhan, C.V. (1969). “Critical Buckling Loads for 
Tapered Columns,” ASCE Journal of the Structural Divi-
sion, 95(ST11), 2419–2431.

Provided finite difference procedures to obtain buckling so-
lutions for simply supported general nonprismatic columns. 
Derived an equivalent flexural stiffness equation for efficient 
handling of a discontinuity in the moment of inertia within 
the unbraced length due to a step in the cross section.

Lee, G.C., Morrell, M.L. and Ketter, R.L. (1972). “Design of 
Tapered Members,” Welding Research Council Bulletin, 
No. 173, 1–32.

Provided linearly tapered web member formulas that give 
the length of a prismatic column composed of the shallower 
end cross section that buckles elastically at the same level 
of axial load as a given member with a linearly tapered web 
depth. The formulas were developed by curve fitting to data 
obtained from solutions for five I-shapes representing a 
range of linearly tapered I-shaped member dimensions.

Iremonger, M.J. (1980). “Finite Difference Buckling Analy-
sis of Non-uniform Columns,” Computers and Structures, 
12, 741–748.

Determined elastic buckling loads for tapered and stepped 
columns with various support conditions using the finite dif-
ference method and a matrix iteration technique. Solutions 
within 1% of the converged results were obtained with less 
than or equal to five segments for the example columns. Ap-
plied an effective moment of inertia at the step to analyze 
stepped columns.
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Errnopoulos, J.C. (1986). “Buckling of Tapered Bars under 
Stepped Axial Loads,” Journal of Structural Engineering, 
112(6), 1346–1354.

Solved the differential equation of buckling exactly for ta-
pered bars subjected to concentrated axial loads at various 
locations along their length. Considered three types of sup-
port conditions: fixed-free, hinged-hinged and fixed-hinged. 
Presented extensive charts and formulas for handling of a 
single intermediate axial load at any position along the 
member length in design. Concluded that for a given ratio 
of the axial loads and location of the intermediate load, (1) 
an optimized design of a tapered bar is possible such that the 
buckling load is maximized, and (2) there are cases where 
the buckling load of a tapered bar is smaller than that of a 
uniform bar having the moment of inertia at the mid-length. 
In these cases, the use of a tapered bar is not recommended. 

Chen, W.F. and Lui, E.M. (1987). Structural Stability, Theory 
and Implementation, Elsevier, New York.

Discussed Newmark’s (1943) numerical implementation of 
the method of successive approximations (in their Section 
6.7). Provided an example solution for a prismatic cantile-
ver column subjected to equal axial loads at its free end and 
mid-height.

Williams, F.W. and Aston, G. (1989). “Exact or Lower Bound 
Tapered Column Buckling Loads,” Journal of Structural 
Engineering, 115(5), 1088–1100.

Developed tables that enable buckling loads to be deter-
mined for linearly tapered columns with uniformly distrib-
uted axial load applied along their length. Six combinations 
of end conditions were considered.

Bazant, Z.P. and Cedolin, L. (1991). Stability of Structures—
Elastic, Inelastic, Fracture and Damage Theories, Oxford 
University Press, New York, 984 pp.

Discussed the mathematical basis for the method of succes-
sive approximations in their Section 5.8.

Wang, C.M., Wang, C.Y. and Reddy, J.N. (2005). Exact So-
lutions for Buckling of Structural Members, CRC Press, 
Boca Raton, FL, 207 pp.

Summarized a number of buckling solutions for columns 
with variable cross section, subjected to end compressive 
forces with and without distributed axial loads.

White, D.W. and Kim, Y.D. (2006). “A Prototype Applica-
tion of the AISC (2005) Stability Analysis and Design 
Provisions to Metal Building Structural Systems,” Report 
prepared for Metal Building Manufacturers Association, 
School of Civil and Environmental Engineering, Georgia 
Institute of Technology, January, 157 pp.

Summarized that the method of successive approximation 
(Timoshenko and Gere, 1961) can be set up using simple 
spreadsheet tools to provide highly accurate solutions 
for the elastic flexural buckling of general tapered and/or 
stepped nonprismatic I-shaped members with specified end 

conditions. Also, indicated that accurate approximations 
may be possible for linearly tapered web I-shaped members 
for simply supported end conditions by using a weighted 
average of the cross-section properties along the member 
length. 

Kim, Y.D. and White, D.W. (2006d). “Elastic Torsional 
and Flexural-Torsional Buckling Estimates for I-shaped 
Members with Linearly-Tapered Webs,” Structural Engi-
neering Mechanics and Materials Report No. 53, School 
of Civil and Environmental Engineering, Georgia Institute 
of Technology, Atlanta, GA, 12 pp., 

Kim, Y.D. and White, D.W. (2007a). “Practical Buckling 
Solutions for Tapered Beam Members,” Proceedings, 
Annual Technical Session, Structural Stability Research 
Council, University of Missouri, Rolla, MO, April, pp. 
259–278.

and
Kim, Y.D. (2010). “Behavior and Design of Metal Building 

Frames with General Prismatic and Web-Tapered Steel 
I-Section Members,” Doctoral Dissertation, School of 
Civil and Environmental Engineering, Georgia Institute 
of Technology, Atlanta, GA, 562 pp.

Showed that for a complete practical range of doubly sym-
metric tapered I-shaped members with both twisting and 
lateral displacement restrained at the brace points, the weak-
axis flexural buckling resistance Pn based on the cross sec-
tion at the middle of the unbraced length and the prismatic 
member Euler buckling equation is never more than 2% un-
conservative relative to the Pn obtained based on the rigorous 
consideration of potential flexural and torsional buckling 
modes for the tapered member.

Elastic Flexural Buckling of Rectangular Frames

Lee, G.C., Morrell, M.L. and Ketter, R.L. (1972). “Design of 
Tapered Members,” Welding Research Council Bulletin, 
No. 173, 1–32.

Developed approximate member stability coefficients and 
slope-deflection equations for load-deflection or buckling 
analysis of frames composed of linearly tapered members. 
The coefficients are based on the assumption of the material 
being concentrated only in the flanges. Provided a design 
approach based on graphical charts for determination of ef-
fective length factors, Kγ, for sidesway buckling of rectan-
gular clear-span frames with linearly tapered web columns 
and rotational restraint from prismatic beams. The influence 
of axial compression in the beams on the sidesway buck-
ling load is not considered. Kim and White (2006a) compare 
these solutions to rigorous eigenvalue buckling calculations 
for two basic benchmark problems with ideal end rotational 
restraint (i.e., zero axial compression in the beams). The ap-
proximate solutions developed by Lee et al. (1972) are 9% 
conservative in the first of these benchmark problems and 
19% conservative in the second benchmark problem.
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Lee, G.C., Chen, Y.C. and Hsu, T.L. (1979). “Allowable 
Axial Stress of Restrained Multi-Segment, Tapered Roof 
Girders,” Welding Research Council Bulletin, No. 248, 
May, 1-28.

Developed charts for calculation of equivalent effective 
length factors, Kγ , for doubly tapered I-shaped members. 
These charts were intended to facilitate the design of multi-
segmented tapered roof girders. The corresponding effective 
length factor solutions were based on rectangular clear-span 
frame solutions in which the restraint from the adjacent mem-
bers was expressed based on their elastic flexural properties, 
neglecting the influence of any axial compression in these 
members and neglecting any influence of frame sidesway 
on the rotational restraint provided by these members. The 
charts were applied to roof girders by taking the columns 
as the restraining members, thus neglecting the influence of 
axial compression and frame sidesway on the stiffnesses of 
these members in determining the rotational restraint at the 
ends of the girders. The resulting process results in a stabil-
ity design in which the rafters are assumed to restrain the 
columns based on their first-order elastic stiffnesses (in the 
design of the columns), but then the columns are assumed to 
restrain the rafters based on their first-order elastic stiffness-
es and no sidesway (in the design of the rafters). These are 
inconsistent assumptions that can lead to significant errors 
relative to rigorous sidesway buckling solutions for actual 
frames. The charts and procedures were not incorporated 
into the AISC ASD provisions but are summarized in Lee 
et al. (1981).

Lui, E.M. (1992). “A Novel Approach for K Factor Determi-
nation,” Engineering Journal, AISC 29(4), 150–159.

Developed a story-stiffness-based method for calculation of 
column effective length factors in rectangular frameworks 
composed of prismatic members. Lui’s equation utilizes the 
results from a first-order lateral load analysis for character-
ization of story sidesway stiffness, includes an approximate 
term that approximates the column P-small delta effects on 
sidesway buckling as a function of the ratio of the column 
sidesway end moments, and accounts for leaning column ef-
fects on the sidesway stability.

Cary, W.C. III and Murray, T.M. (1997). “Effective Lengths 
of Web-Tapered Columns in Rigid Metal Building 
Frames,” Report No. CE/VPI-ST 97/06, May, 59 pp.

Extended Lui’s (1992) story-stiffness-based approach for 
calculation of sidesway buckling effective lengths to rect-
angular frames with linearly tapered columns. The develop-
ment simplifies Lui’s calculation of the P-small delta effect 
by assuming reverse curvature bending and using the rigidity 
EIo at the smallest cross section of the lateral-load resisting 
columns. The influence of axial compression in the beams 
or rafters on the sidesway buckling load is not considered.

Errnopoulos, J.C. (1997). “Equivalent Buckling Length of 
Non-uniform Member,” Journal of Constructional Steel 
Research, 42(2), 141–158.

Derived nonlinear equilibrium equations for framed prismat-
ic and nonprismatic compression members for nonsway and 
sway buckling on the basis of the slope deflection method. 
Results for the critical loads and the equivalent buckling 
lengths are presented in tabular and graphical form.

Jimenez, G.A. (2005). “Restrained Web-Tapered Columns, 
A Practical Design Approach,” Proceedings, Annual 
Technical Session, Structural Stability Research Council, 
University of Missouri, Rolla, MO, pp. 225–240.

Discussed the second-order elastic analysis of rectangular 
frames using slope deflection equations with approximate 
coefficients from Lee et al. (1972). Investigated the use 
of the K-factor expression developed by Cary and Murray 
(1997) for rectangular frame geometries.

White, D.W. and Kim, Y.D. (2006). “A Prototype Applica-
tion of the AISC (2005) Stability Analysis and Design 
Provisions to Metal Building Structural Systems,” Report 
prepared for Metal Building Manufacturers Association, 
School of Civil and Environmental Engineering, Georgia 
Institute of Technology, January, 157 pp.

Presented a general story-stiffness-based equation for cal-
culation of the elastic sidesway buckling load of general 
rectangular frames with equal or unequal height columns 
composed of tapered I-shaped members. The proposed 
equation is an extension of a story-stiffness-based buckling 
equation provided in the Commentary of AISC (2005) and 
gives similar results to the K-factor equation developed by 
Cary and Muray (1997). Results using the proposed equa-
tion were compared to rigorous matrix analysis eigenvalue 
buckling solutions. Discussed the importance of accounting 
for the reduced stiffness of beams and rafters in clear-span 
frames due to axial compression induced by the thrust from 
the foundation.

White, D.W., Surovek, A. and Chang, C.-J. (2007). “Di-
rect Analysis and Design Using Amplified First-Order 
Analysis: Part 2—Moment Frames and General Framing 
Systems, Engineering Journal, AISC, Vol. 44, No. 4, 4th 
Quarter.

Presented a streamlined method for stability design of gen-
eral framing systems based on the use of first-order elastic 
analysis to quantify the sidesway stiffness and the appli-
cation of P-Δ shear forces calculated from amplified first-
order elastic story drift values. Discussed the calculation of 
reduced beam stiffnesses in cases where the beams are sub-
jected to large axial compression, e.g., due to large thrust 
from the foundation in some clear-span frames.
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Elastic Flexural Buckling of Gabled Frames

Lu, L.W. (1965). “Effective Length of Columns in Gable 
Frames,” Engineering Journal, AISC, January, 6–7.

Outlined a simple procedure for calculation of effective 
lengths for sidesway buckling of columns in gable frames, 
accounting for the influence of axial compression in the 
rafters.

Watwood, V.B. (1985). “Gable Frame Design Consider-
ations,” Journal of Structural Engineering, ASCE, 111(7), 
1543–1558.
Discussed the calculation of the effective length for the raf-
ters in an example gable frame, accounting for the rafter ax-
ial compression and the coupling with the sidesway stability 
of the overall structure. Suggested an approach to design of 
rafters subjected to significant axial compression that in es-
sence takes the buckling load of the rafters as the axial force 
level in these members at incipient sidesway buckling of the 
full structure. This approach is equivalent to using an effec-
tive length factor for the rafters significantly larger than one 
for the example frame considered. White and Kim (2006) 
suggest that this approach to the design of the rafters is un-
necessarily conservative.

Davies, J.M. (1990). “In-plane Stability in Portal Frames,” 
Structural Engineer, 68(8).

Provided a simplified procedure for sidesway buckling 
analysis of symmetric clear-span gable frames composed of 
prismatic I-shaped members. The procedure accounts for the 
influence of axial compression in the rafters and the pitch of 
the rafters on the sidesway buckling resistance. The method 
focuses on the buckling analysis of a subassembly formed by 
one-half of the frame.

Davies, J.M. and Brown, B.A. (1996). Plastic Design to BS 
5950, Steel Construction Institute, Blackwell Science, 
326 pp.

Provided a comprehensive treatise on plastic design of steel 
frames using the BS 5950:1990. Gave extensive information 
on the design of pitched roof clear-span as well as multi-span 
frames by the British Standard using hot-rolled I-shaped 
members. Explained that rules in BS 5950 for checking 
when second-order effects may be ignored can be grossly 
unconservative for clear-span frames. This is because the BS 
5950 procedures presuppose that clear-span frames buckle 
elastically in a sidesway mode solely due to the axial forces 
in the columns. In contrast, the authors show that the elas-
tic buckling of clear-span frames is heavily influenced by 
the axial compressive force in the relatively long and more 
slender rafters. The authors recommended a simplified form 
of the transcendental equation developed by Davies (1990) 
for determining the elastic critical load of pinned base clear-
span frames composed of prismatic members.

Silvestre, N. and Camotim, D. (1997). “Second-Order Ef-
fects in Pitched Roof Steel Frames,” Proceedings, Annual 
Technical Session, Structural Stability Research Council, 
University of Missouri, Rolla, MO, pp. 85–98.

Proposed a method that allows for estimation of the second-
order effects in one-bay pitched-roof symmetric clear-span 
frames accounting for both sidesway and column spreading 
modes of instability. The method requires the calculation of 
the first two buckling load values, the first buckling mode 
always being the sidesway (anti-symmetric) mode and the 
second being a column spreading (symmetric) mode. The 
authors identify three components of symmetric pitch-roof 
frame first-order moments:

1. Nonsway moments, obtained by artifi cially restrain-
ing the lateral defl ections at the knees.

2. Symmetric sway moments, obtained by loading the 
knees with an equal and opposite part of the artifi cial 
reactions from step 1.

3. Anti-symmetric sway moments, obtained by loading 
the frame by the remainder of the previous artifi cial 
reactions.

The authors assume symmetrical loading on symmetrical 
frames; therefore, two equal loads are obtained for the load-
ing in step 3. The authors found that both the symmetric and 
anti-symmetric bifurcation loads are influenced significantly 
by axial compression in the rafters. Also, they observed that 
the lowest eigenvalue buckling load is always associated 
with the anti-symmetric sidesway mode and that the ratio 
of the second buckling load to the first ranged from 1.04 
to 2.43 in their fixed-base frames and 1.94 to 8.01 in their 
pinned-base frames. The frames had roof pitch angles vary-
ing from 6 to 18 degrees. The authors proposed a moment 
amplification equation that is similar to the AISC (2005) 
B1-B2 method but combines each of the three preceding mo-
ments with separate amplifiers based on the symmetric and 
anti-symmetric buckling modes for the symmetric sway and 
anti-symmetric sway first-order moments. Because the B1-B2 
method is viewed as being too cumbersome by many prac-
ticing engineers, the proposed method is not likely to be of 
use for practical design. However, it does shed light on the 
underlying behavior.

Silvestre, N. and Camotim, D. (2002). “Post-Buckling Be-
havior, Imperfection Sensitivity and Mode Interaction in 
Pitched-Roof Steel Frames,” Proceedings, Annual Tech-
nical Session, Structural Stability Research Council, Uni-
versity of Missouri, Rolla, MO, pp. 139–162.

Assessed the influence of the rafter compression and col-
umn base stiffness on anti-symmetric and symmetric post-
buckling behavior and imperfection sensitivity in symmetric 
pitched roof clear-span frames. Studied frames subjected to 
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idealized loads causing one value of uniform axial compres-
sion in the columns and another value of uniform axial com-
pression in the rafters. The frame members were prismatic 
in all cases. Identified the most detrimental frame imperfec-
tion configurations under anti-symmetric/symmetric mode 
coupling. Determined that second-order effects can be ne-
glected in these types of frames when 1/γAS < 0.1 + 1/γS  and 
1/γS < 0.1, where γS and γAS  are the buckling load ratios in 
the symmetric and anti-symmetric modes. Observed that in 
addition to causing a reduction in the buckling loads, high 
rafter compression leads to imperfection sensitive behavior. 
Discovered that the most detrimental imperfection configu-
ration corresponded to a pure symmetric mode shape. This 
indicates that anti-symmetric/symmetric mode interaction 
does not alter (increase) the frame imperfection sensitivity.

King, C. (2001a). In-Plane Stability of Portal Frames to BS 
5950-1:2000, SCI Publication P292, Steel Construction 
Institute, Ascot, Berkshire, 213 pp.

Discussed the in-plane stability behavior of single-story 
frames (single bay and multiple bay) and explained three 
methods provided in the British Standard for design of these 
types of frames for in-plane stability: (1) the sway-check 
method, (2) the amplified moment method, and (3) the sec-
ond-order analysis method. A large portion of the discussion 
addressed the application of plastic design methods for met-
al building frames fabricated from rolled I-shaped members 
with haunches at the knee joints. Plastic design with these 
types of members is commonly used to target the greatest 
economy in British practices versus the use of fabricated 
sections and thin webs in American practice. Discussed the 
separate second-order effects associated with “arching” or 
“snap-through” failure of rafters. Checks are instituted to 
guard against this mode of failure in multiple-bay frames 
with gables in each bay, moment continuity throughout the 
frame, and light interior columns. Discussed the importance 
of axial compression in the rafters of clear-span frames and 
contrasts this behavior with the behavior of beams in multi-
ple-story rectangular frames. Suggested a simple reduction 
in the effective elastic stiffness of the rafters to account for 
the axial compression effects. This reduction may be ex-
pressed in the context of the AISC (2005) provisions and 
prismatic members as (1 − αPr /PeL), where Pr is the required 
design axial force, α = 1.6 in ASD and 1.0 in LRFD, PeL  = 
π2EI/L2, and L is the total on-slope length of the rafters in the 
span under consideration for multiple-span frames or single-
span frames sized by plastic design or on one-half of this 
length for single-span frames sized by elastic design.

King, C. (2001b). Design of Single Span Steel Portal Frames 
to BS 5950-1:2000, SCI Publication P252, Steel Con-
struction Institute, Ascot, Berkshire.

Discussed best practices for design of single-story clear-span 
frames in the U.K. The guidance in this publication focused 

on the design of clear-span frames using hot rolled steel I-
shapes. Two design examples were presented, one showing 
manual calculations and the other showing output from a 
standard computer program.

White, D.W., Surovek, A. and Chang, C.-J. (2007). “Di-
rect Analysis and Design Using Amplified First-Order 
Analysis: Part 2—Moment Frames and General Framing 
Systems, Engineering Journal, AISC, Vol. 44, No. 4, 4th 
Quarter.

Summarized guidelines from Eurocode 3 (CEN 2005) in-
dicating that rectangular frame idealizations presented in 
the paper may be applied as an acceptable approximation to 
gable and monoslope frames for roof slopes up to 1:2 (26°) 
and rafter axial compression αPr < 0.09PeL, where PeL is the 
elastic flexural buckling load of an equivalent simply sup-
ported column having the rafter geometry and the full sys-
tem length of the rafters. Suggested the calculation of PeL for 
this check using the reduced flexural rigidity specified by 
the direct analysis method. Nonprismatic member geometry 
was not addressed; however, the concepts and procedures 
are readily extended to nonprismatic member geometry us-
ing the framework presented by White and Kim (2006).

Elastic Flexural Buckling of Crane Buildings

Lui, E.M. and Sun, M. (1995). “Effective Lengths of Uni-
form and Stepped Crane Columns,” Engineering Journal, 
AISC, 3rd quarter, 98-106.

Gave a procedure for calculating the effective length factor 
for uniform prismatic and stepped prismatic crane columns 
with any values of relative shaft lengths, moments of inertia, 
and loading and boundary conditions. The procedure was 
based on the story-stiffness concept and took into account 
both member and frame stability effects. The procedures 
were based fundamentally on determining the axial force PLcr 
in the bottom portion of a crane column at incipient elastic 
sidesway buckling of a rectangular frame. The correspond-
ing effective length factor for the bottom segment of the col-
umn was fundamentally related to PLcr by the equation PLcr 
= π2EIL /(KLLL)2, where LL is the length of the lower segment 
and IL is the moment of inertia of this segment. Similarly, the 
axial force PUcr in the top portion of the crane column at the 
incipient sidesway buckling of the structure was fundamen-
tally related to the effective length factor of the top segment 
by PUcr = π2EIU/(KULU)2. Consequently, KU = KL (LL /LU) [(PL 

/PU)(IU /IL)]0.5. This approach generalized the effective length 
(or column elastic buckling load) calculations from a num-
ber of simplified procedures that have been used in practice 
for crane building design.

Galambos, T.V. (1988a). “Mill Building Columns,” Chapter 
12, Guide to Stability Design Criteria for Metal Structures, 
4th Ed., T.V. Galambos (ed.), Wiley, New York, pp. 409–421.
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Discussed traditional methods for stability design of crane 
columns.

White, D.W. and Kim, Y.D. (2006). “A Prototype Applica-
tion of the AISC (2005) Stability Analysis and Design 
Provisions to Metal Building Structural Systems,” Report 
prepared for Metal Building Manufacturers Association, 
School of Civil and Environmental Engineering, Georgia 
Institute of Technology, January, 157 pp.

Discussed generalized calculation of crane building fl exural 
buckling loads using second-order matrix structural analy-
sis. Explained how the direct analysis method can be applied 
to crane buildings, thus eliminating the need for calculation 
of crane column effective length factors.

Column Inelastic Flexural Buckling and Design Strength

Timoshenko, S.P. and Gere, J.M. (1961). Theory of Elastic 
Stability, McGraw-Hill, New York, 541 pp.

Discussed the calculation of inelastic buckling loads for non-
prismatic bars using tangent modulus concepts. Observed, 
“We shall always be on the safe side if in such cases [vari-
able cross-section members with a variation of the column 
tangent modulus along their length] we use formulas derived 
for elastic conditions and substitute them for E in the tangent 
modulus Et calculated for the cross-section with the maxi-
mum compressive stress.”

Kim, M.C., Lee, G.C. and Chang, K.C. (1995). “Inelastic 
Buckling of Tapered Members with Accumulated Strain,” 
Structural Engineering and Mechanics, 3(6), 611–622.

Developed a beam finite element for analysis of tapered 
members considering three types of residual stress patterns 
and a stress-strain curve that is elastic-perfectly plastic-strain 
hardening. The investigation was concerned with the capac-
ity of tapered members with accumulated strains resulting 
from previous loading history.

Jimenez Lopez, G.A. (1998). “Inelastic Stability of Tapered 
Structural Members,” Doctoral Dissertation, University of 
Minnesota, Minneapolis-St. Paul, MN, 201 pp.

Conducted inelastic analyses using the beam-theory-based 
slope-deflection equations from Lee et al. (1972) and ac-
counting for initial out-of-straightness, nominal Lehigh 
(Galambos and Ketter, 1959) residual stress effects, and 
end restraint effects. Constructed column curves for specific 
cases of linearly tapered I-shaped members, assuming com-
pact cross-section behavior (i.e., no consideration of web or 
flange plate slenderness effects).

Jimenez, G. and Galambos, T.V. (2001). “Inelastic Stability 
of Pinned Tapered Columns,” Proceedings, Annual Tech-
nical Session, Structural Stability Research Council, Uni-
versity of Missouri, Rolla, MO, pp. 143–158.

Presented inelastic buckling solutions for simply supported 
tapered columns and compared them with the nominal resis-
tances calculated using the procedures in Appendix F of the 
AISC-LRFD Specification (1993). The design procedures 
in Appendix F of the AISC-LRFD Specification (1993) are 
based on Lee et al. (1972). Showed that the AISC-LRFD 
Specification (1993) produces conservative results for all the 
cases studied.

White, D.W. and Kim, Y.D. (2006). “A Prototype Applica-
tion of the AISC (2005) Stability Analysis and Design 
Provisions to Metal Building Structural Systems,” Report 
prepared for Metal Building Manufacturers Association, 
School of Civil and Environmental Engineering, Georgia 
Institute of Technology, Atlanta, GA, January, 157 pp.

and
Kim, Y.D. (2010). “Behavior and Design of Metal Building 

Frames with General Prismatic and Web-Tapered Steel 
I-Section Members,” Doctoral Dissertation, School of 
Civil and Environmental Engineering, Georgia Institute 
of Technology, Atlanta, GA, 562 pp.

Developed a general procedure, based on AISC (2005), for 
calculation of column elastic or inelastic axial resistance 
for any type of prismatic or nonprismatic I-shaped member 
subjected to constant or variable axial compression along its 
length. The procedure considers all types of member cross-
section geometries, including cross sections having slender 
plate elements under uniform axial compression. The pro-
cedure starts with (1) the calculation of a member elastic 
buckling load ratio γe = Fe /fr, where Fe is the axial stress at 
the most highly stressed cross section along the length at 
incipient elastic buckling of the member and fr is the cor-
responding design axial stress at this cross section, and (2) 
the calculation of the equivalent yield ratio fr /QFy at the most 
highly stressed cross section. The term γe can be applied to 
address not only flexural buckling, but also torsional, flex-
ural-torsional, and constrained axis torsional buckling of 
columns as applicable. The calculation of inelastic column 
resistance parallels the approach taken by Lee et al. (1981), 
except that the calculation of the elastic buckling load is gen-
eralized within the γe parameter, and the design resistances 
are expressed in terms of γe rather than in terms of the length 
of an equivalent prismatic column composed of one of the 
column cross-sections. By using the term γe, the proposed 
procedure can be extended to provisions other than those 
in AISC (2005). In Kim (2010), an alternative approach 
using the AISI (2007) unified effective width equations is 
presented for calculating column axial resistance. The AISI 
(2007) approach provides more accurate solutions typically 
for box sections with slender elements and large KL /r.
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First- and Second-Order Elastic Beam-Column and/or 
Frame Analysis (Planar Analysis)

Fogel, C.M. and Ketter, R.L. (1962). “Elastic Strength of 
Tapered Columns,” Journal of the Structural Division, 
ASCE, 88(ST5), 67–105.

Focused on the interaction of axial thrust and bending mo-
ment with the first yield as the limit. Solved the governing 
differential equations using Bessel functions and numerical 
integration.

Karabolis, D.L. and Beskos, D.E. (1983). “Static, Dynamic 
and Stability Analysis of Structures Composed of Tapered 
Beams,” Computers and Structures, 16(6), 731–748.

Developed a finite element for analysis of arbitrary cross-
section members with a linearly varying depth. The element 
geometric stiffness matrix was constructed on the basis of 
shape functions corresponding to the exact static displace-
ment function of a tapered member for the case of zero axial 
load. The approach shows good accuracy for stability analy-
sis using four or five elements per member.

Aristizabal-Ochoa, J.D. (1987). “Tapered Beam and Col-
umn Elements in Unbraced Frame Structures,” Journal of 
Computing in Civil Engineering, ASCE, 1(1), 35–49.

Derived closed form beam matrix equations for first-order 
planar analysis of frames with linearly tapered members.

Guo, C.Q. and Roddis, W.M.K. (1999). “The Significance 
of P-Δ Effects in Single-Story Metal Building Design,” 
Structural Engineering and Engineering Materials SL 
Report 99-2, University of Kansas Center for Research, 
Lawrence, KS, 61 pp.

Studied second-order effects in representative clear-span 
and modular metal building frames. Determined that the P-Δ 
effects are small in clear-span frames but are significant in 
modular frames. All analyses were conducted at working 
load levels. Second-order effects were not considered at ul-
timate load levels.

Kim, Y.D. and White, D.W. (2006a). “Benchmark Problems 
for Second Order Analysis of Frames with Tapered-Web 
Members,” Structural Engineering Mechanics and Mate-
rials Report No. 53, School of Civil and Environmental 
Engineering, Georgia Institute of Technology, Atlanta, 
GA, 10 pp.

Provided converged second-order elastic analysis solutions 
for two basic benchmark problems involving linearly ta-
pered web members. Discussed the results using two rep-
resentative second-order elastic analysis approaches, one 
in which the influence of the taper was accounted for di-
rectly within the element formulation and the other which 
used a larger number of standard prismatic beam elements. 
Also, compared to solutions based on the slope-deflection 
equations developed by Lee et al. (1972). Showed that the 

slope-deflection equations from Lee et al. can exhibit sub-
stantial error relative to the rigorous solutions even for rela-
tively minor taper and small axial load.

Guney, E. and White, D.W. (2007). “Ensuring Sufficient 
Accuracy of Second-Order Frame Analysis Software,” 
Structural Engineering Mechanics and Materials Report 
No. 55, School of Civil and Environmental Engineering, 
Georgia Institute of Technology, Atlanta, GA, May, 95 pp.

  Studied the number of elements required to ensure less than 
5% error in the nodal displacements and less than 3% error 
in the maximum internal moments for second-order elastic 
analysis of prismatic members with a wide range of load-
ings and end conditions. Also, addressed the number of ele-
ments required to ensure less than 2% error in eigenvalue 
buckling analysis solutions. Considered the requirements 
for P-Δ only analysis procedures as well as for standard ele-
ment formulations based on a cubic transverse displacement 
approximation. Demonstrated that the cubic displacement-
based formulation requires substantially fewer elements per 
member to achieve the desired levels of accuracy when the 
stability effects are significant. These recommendations may 
be applied for nonprismatic members based on the assump-
tion that the elastic stiffness of these types of members is 
represented with negligible error.

Column Constrained-Axis Torsional Buckling

Kim, Y.D. and White, D.W. (2006d). “Elastic Torsional 
and Flexural-Torsional Buckling Estimates for I-shaped 
Members with Linearly-Tapered Webs,” Structural Engi-
neering Mechanics and Materials Report No. 53, School 
of Civil and Environmental Engineering, Georgia Institute 
of Technology, Atlanta, GA, 12 pp.,

Kim, Y.D. and White D.W. (2007a). “Practical Buckling 
Solutions for Tapered Beam Members,” Proceedings, 
Annual Technical Session, Structural Stability Research 
Council, University of Missouri, Rolla, MO, April, pp. 
259–278.

and
Kim, Y.D. (2010). “Behavior and Design of Metal Building 

Frames with General Prismatic and Web-Tapered Steel 
I-Section Members,” Doctoral Dissertation, School of 
Civil and Environmental Engineering, Georgia Institute 
of Technology, Atlanta, GA, 562 pp.

Performed a finite element parametric study of the elastic 
constrained axis torsional buckling of I-shaped members 
with linearly tapered web depth and out-of-plane displace-
ments constrained at the centroidal axis of purlins or girts at-
tached to one flange. Used the three-dimensional beam finite 
element from Chang (2006). Showed that the constrained 
axis torsional buckling loads of tapered members can be esti-
mated with good accuracy by using the analytical equations 
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for a prismatic member from Timoshenko and Gere (1961) 
or Bleich (1952), with the cross section geometry at the mid-
dle of the longer unbraced length of the inside flange.

Beam and Beam-Column Elastic 
Lateral-Torsional Buckling

Stussi, F. (1935). Schweiz. Bauztg, Vol 105, p. 123. (also 
Publ. IABSE, Vol. 3, p. 401).

Applied the method of successive approximations to investi-
gate the lateral buckling of rectangular cross-section beams. 

Bleich, F. (1952). Buckling Strength of Metal Structures, 
McGraw-Hill, New York, 508 pp.

Provided detailed discussions of numerical solution proce-
dures based on the method of successive approximations 
for thin-walled open section beam lateral torsional buckling 
problems. These developments were based largely on the re-
search of Salvadori (1951).

Lee, G.C. (1959). “On the Lateral Buckling of a Tapered 
Narrow Rectangular Beam,” Journal of Applied Mechan-
ics, 26, 457–458.

Established that for small tapering angles (15 degrees or 
less), Euler-Bernoulli theory for beams yields satisfactory 
results.

Culver, C.G. and Preg, S.M. (1968). “Elastic Stability of 
Tapered Beam-Columns,” Journal of the Structural Divi-
sion, ASCE, ST2, 455–470.

Derived the differential equations for elastic buckling of 
tapered I-shaped beam-columns. The differential equations 
were solved using the finite difference method. Solutions 
were presented in tables for design use.

Lee, G.C., Morrell, M.L. and Ketter, R.L. (1972). “Design of 
Tapered Members,” Welding Research Council Bulletin, 
No. 173, 1–32.

Addressed the analysis of linearly tapered beam-columns of 
doubly symmetric I-shapes. Both in-plane and lateral-buck-
ling strengths were determined using a Rayleigh-Ritz pro-
cedure. The authors developed tables enabling the designer 
to determine the length of an equivalent prismatic beam that 
buckles elastically at the same level of loading as applied to 
the web-tapered member.

Kitipornchai, S. and Trahair, N.S. (1972). “Elastic Stability 
of Tapered I-Beams,” Journal of the Structural Division, 
ASCE, 98(ST3), 713–728.

Studied the elastic twisting and flexural-torsional buckling 
of tapered I-beams theoretically. Developed a general meth-
od of analysis and showed reasonable agreement with exper-
iments conducted on beams with flange-width or web-depth 
taper. Showed that the elastic critical loads of depth-tapered 
beams do not vary greatly as the degree of taper increases. 
Indicated that this behavior is related to the insensitivity of 
the torsional stiffness to the degree of taper.

Morrell, M.L. and Lee, G.C. (1974). “Allowable Stresses for 
Web-Tapered Beams with Lateral Restraints,” Welding 
Research Council Bulletin, No. 192, 1–12. 

and
Lee, G.C. and Morrell, M.L. (1975). “Application of AISC 

design provisions for tapered members,” Engineering 
Journal, AISC, 12(1), 1–13.

Developed factors that estimate the effects of restraint from 
adjacent unbraced segments and moment or flange stress 
gradients along the length on the elastic LTB resistance of 
linearly tapered web I-shaped members. These factors were 
incorporated as the parameter B in the AISC ASD provisions 
for linearly tapered members. The solutions built on the 
work by Lee et al. (1972) and focused on four idealizations: 
1. Three equal unbraced segments with the largest moment 

M2 located within the middle segment and a larger mo-
ment M1 at one end of the three segments. The actual 
moment or stress distribution in the middle segment and 
whether M1 occurs in the adjacent segment with the 
larger or the smaller end is not addressed in the resulting 
equation for B. The adjacent unbraced lengths were as-
sumed to be torsionally simply supported at the ends of 
the three-segment assembly.

2. Two equal unbraced segments with the largest fl exural 
stress occurring at the larger end and the smallest fl exur-
al stress occurring at the smaller end of the adjacent un-
braced segments. The distribution of the fl ange fl exural 
stresses along the unbraced length was not considered in 
the fi nal equation for B. The adjacent unbraced lengths 
were assumed to be torsionally simply supported at the 
ends of the two-segment assembly.

3. Two equal unbraced segments with the largest fl exural 
stress occurring at the smaller end and the smallest fl ex-
ural stress occurring at the larger end of the adjacent un-
braced segments. The distribution of the fl ange fl exural 
stresses along the unbraced length was not considered in 
the fi nal equation for B. The adjacent unbraced lengths 
were assumed to be torsionally simply supported at the 
ends of the two-segment assembly.

4. One unbraced length with a linear moment diagram hav-
ing zero moment at the smaller end of the member and 
maximum moment at the larger end. Torsionally simply 
supported end conditions were assumed at the ends of 
the unbraced length.

The results from Kim and White (2006c, 2007a) indicate 
that the direct application of the Yura and Helwig (1996) Cb 
approach to determining the elastic LTB resistance gives an 
alternative highly accurate accounting for flange stress gra-
dient effects. The procedure for handling end-restraint ef-
fects in prismatic members, recommended by Nethercot and 
Trahair (1976) and summarized in Galambos (1998), has 
good potential to be extended to linearly tapered members to 
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account for end restraint effects. This approach has been ap-
plied extensively for calculation of prismatic member LTB 
resistances (White and Jung, 2008; White and Kim, 2008).

Kitipornchai, S. and Trahair, N.S. (1975). “Elastic Behav-
ior of Tapered Monosymmetric I-Beams,” Journal of the 
Structural Division, ASCE, 101(ST8), 1661–1678.

Developed a general theory for the first-order bending and 
torsion of tapered monosymmetric I-beams. Explained ad-
ditional terms that appear in the solutions due to the taper. 
Explained that the bending and torsion equations are inter-
dependent in tapered monosymmetric I-beams such that the 
behavior cannot be separated into independent bending and 
torsion actions.

Hsu, T.L. and Lee, G.C. (1981). “Design of Beam Columns 
with Lateral-Torsional End Restraints,” Welding Research 
Council Bulletin, No. 272, November, 1–23.

Developed charts of effective length factors K for estimation 
of the elastic LTB resistance of doubly symmetric prismatic 
beams for the two separate cases considered in the double-
formula approach of the AISC ASD Specification: (1) only 
St. Venant torsional stiffness considered and (2) only warp-
ing torsional stiffness considered. Galambos (1988b) sug-
gested that these equations may be applied for tapered beams 
with a small tapering ratio, but no limits were provided for 
this type of application. The charts are based on consider-
ation of the ratio of the Iy /L of the unbraced length under 
consideration to the Iy /L of the adjacent unbraced length, 
which is assumed to provide restraint. The separate charts 
for the St. Venant and the warping torsion-based K values are 
approximately the same. The influence of the moments and 
moment gradients in the adjacent unbraced lengths were not 
considered. Only the relative first-order elastic properties of 
the unbraced lengths are considered. Nethercot and Trahair 
(1976) developed a design method for determining the elas-
tic LTB resistances of doubly symmetric prismatic I-beams 
that provides a more correct accounting for the end restraint 
provided by adjacent segments. The Nethercot and Trahair 
approach is summarized in Galambos (1998). Concluded 
that beam-column design can be achieved best by consider-
ing two separate equations, one for in-plane and the other for 
out-of-plane failure modes.

Brown, T.G. (1981). “Lateral-Torsional Buckling of Tapered 
I-Beams,” Journal of the Structural Division, ASCE, 
107(ST4), 689–697.

Determined critical buckling loads for simply supported 
beams with a double linear web taper and tapered web can-
tilever beams using central finite differences. The effect of 
loads placed either above or below the centroid is included. 
Solutions by subsequent authors do not agree with Brown’s 
solutions.

Wekezer, J.W. (1985). “Instability of Thin-Walled Bars,” 
Journal of Engineering Mechanics, 111(7), 923–935.

and
Wekezer, J.W. (1985). “Nonlinear Torsion of Thin-Walled 

Bars of Variable Open Cross-Section,” International Jour-
nal of Mechanical Sciences, 27(10), 631–641.

First research that studied the LTB of thin-walled tapered 
beams with arbitrary cross section and loading. Used a finite 
element formulation in which the walls were treated as mem-
branes and both the in-plane cross-section deformations and 
the mid-surface shear strains were neglected. Andrade and 
Camotim (2005) indicate that the formulation is not fully 
consistent, mostly because the locus of shear centers is not 
properly handled.

Yang, Y.B. and Yau, J.-D. (1987). “Stability of Beams with 
Tapered I-Sections,” Journal of Engineering Mechanics, 
ASCE, 113(9), 1337–1357.

Derived the differential equations of equilibrium for a dou-
bly symmetric thin-walled open-section tapered I-beam and 
formulated a finite element based on these equations. Com-
parisons are made with other existing solutions. Andrade 
and Camotim (2005) indicate that the formulation adopts a 
number of simplifying assumptions and show slightly differ-
ent solutions in benchmark problems.

Bradford, M.A. (1988). “Stability of Tapered I-Beams,” 
Journal of Constructional Steel Research, 9(3), 19–216.

and
Bradford, M.A. and Cuk, P.L. (1988). “Elastic Buckling of 

Tapered Monosymmetric I-Beams,” Journal of Structural 
Engineering, ASCE, 114(5), 977–996.

Developed a finite element formulation for I-beams hav-
ing equal or unequal size flanges with uniform or variable 
width and with webs having constant or linearly tapered 
height. Andrade and Camotim (2005) indicate that the for-
mulation adopts a number of simplifying assumptions and 
show slightly different solutions in benchmark problems. 
Proposed new design equations for use with the Australian 
Standard AS 1250 (SAA, 1987) and British Standard BS 
5950 (BSI, 1985).

Braham, M. and Hanikenne, D. (1993). “Lateral Buckling of 
Web Tapered Beams: An Original Design Method Con-
fronted with a Computer Simulation,” Journal of Con-
structional Steel Research, 27, 23–36.

Analyzed linearly tapered web I-shaped members using a 
constant depth thin-walled open-section beam finite ele-
ment, by discretizing the beams into 20 segments. Devel-
oped suggestions for design based on these results. Other 
authors have shown that the approach taken in this paper can 
lead to incorrect LTB solutions.
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Rajasekaran, S. (1994a). “Equations for Tapered Thin-
Walled Beams of Generic Open Section,” Journal of En-
gineering Mechanics, ASCE, 120(8), 1607–1629.

and
Rajasekaran, S. (1994b). “Instability of Tapered Thin-

Walled Beams of Generic Section, Journal of Engineering 
Mechanics, ASCE, 120(8), 1630–1640.

Derived nonlinear equilibrium equations valid for tapered 
beams with arbitrary cross sections, which were then solved 
by the finite element method. Andrade and Camotim (2005) 
indicate that Rajasekaran’s derivation is inconsistent be-
cause it omits terms having the same order of magnitude as 
others which are retained.

Yura, J. and Helwig, T. (1996). “Bracing for Stability,” Short 
Course Notes, Structural Stability Research Council.

Proposed a procedure for calculating the LTB strength of lin-
early tapered I-shaped beams based on the use of the AISC 
Cb equations, written in terms of the compression flange 
stresses, and the analytical elastic LTB equations for a pris-
matic member, using the tapered member cross section at the 
middle of the unbraced length.

Ronagh, H.R., Bradford, M.A. and Attard, M.M. (2000a). 
“Nonlinear Analysis of Thin-Walled Members of Variable 
Cross-section. Part I: Theory,” Computers and Structures, 
77, 285–299.

and
Ronagh, H.R., Bradford, M.A., and Attard, M.M. (2000b). 

“Nonlinear Analysis of Thin-Walled Members of Vari-
able Cross-section. Part II: Application,” Computers and 
Structures, 77, 301–313.

Formulated and applied a thin-walled open-section beam 
finite element for tapered cross-section members. Showed 
that their element agrees with the results from Kitipornchai 
and Trahair (1975) for the first-order analysis case. Applied 
their nonlinear element for elastic buckling analysis of dou-
bly symmetric I-shaped members and compare to numerical 
solutions by a number of other authors.

Maquoi, R. (2004). “Recent European Advances in the 
Member Verification to Lateral Torsional Buckling,” Pro-
ceedings, Annual Technical Session, Structural Stability 
Research Council, University of Missouri, Rolla, MO, 
pp. 265–284.

Described a MathCAD application named ELTBTB that 
addresses the elastic lateral-torsional buckling analysis of 
web-tapered beams. The program’s scope includes simply 
supported single-span beam segments, doubly or singly 
symmetric I-shapes, web depth varying linearly between the 
segment ends with other cross-section dimensions remain-
ing constant, and bending about the major-axis due to end 
moments only.

Andrade, A. and Camotim, D. (2003). “Lateral-Torsional 
Buckling of Singly symmetric Web-Tapered I-shaped 
Beams and Cantilevers,” Proceedings, Annual Technical 
Session, Structural Stability Research Council, University 
of Missouri, Rolla, MO, pp. 233–254.

and
Andrade, A. and Camotim, D. (2005). “Lateral-Torsional 

Buckling of Singly symmetric Web-Tapered Beams: The-
ory and Application,” Journal of Engineering Mechanics, 
ASCE, 131(6), 586–597.

Formulated the equations for elastic LTB of singly sym-
metric web-tapered I-shaped members. Evaluated the criti-
cal moments by the Rayleigh-Ritz method. Conducted a 
parametric study to assess the influence of web taper and 
section monosymmetry on elastic LTB predictions for canti-
levers and simply supported beams. In the second paper, the 
authors demonstrated that replacing a tapered member by 
a piecewise prismatic one does not lead to the correct LTB 
solution. The authors also provided a list of various formula-
tions in which there are known errors in the approach.

Andrade, A., Camotim, D. and e Costa, P.P. (2005). “Elas-
tic Lateral Torsional Buckling Behavior of Doubly Sym-
metric Tapered Beam-Columns,” Proceedings, Annual 
Technical Session, Structural Stability Research Council, 
University of Missouri, Rolla, MO, pp. 445–468.

Extended the previous work by Andrade and Camotim 
(2003) to include the influence of prebuckling displace-
ments. The authors demonstrate that replacing a tapered 
member by a piecewise prismatic one does not lead to the 
correct LTB solution, regardless of the number of segments 
considered, since relevant behavior aspects due entirely to 
the cross-section variation are not captured.

Boissonnade, N. and Maquoi, R. (2005). “A Geometrically 
and Materially Non-linear 3-D Beam Finite Element for 
the Analysis of Tapered Steel Members,” Steel Structures, 
5, 413–419.

Developed a three-dimensional finite element based on ap-
plication of thin-walled open-section beam theory. The au-
thors demonstrated—analytically and numerically—that 
the use of prismatic beam finite elements for the analysis of 
tapered beams (by subdividing the member into small seg-
ments) can lead to significant errors when the behavior is 
influenced by torsion.

Chang, C.J. (2006). “Construction Simulation of Curved I-
Girder Bridges,” Ph.D. Dissertation, School of Civil and 
Environmental Engineering, Georgia Institute of Technol-
ogy, Atlanta, GA, 340 pp.

Developed a beam finite element for three-dimensional 
analysis of tapered doubly and singly symmetric I-shaped 
members. Benchmark solutions indicated that the element 
gives predictions for elastic LTB similar to those presented 
by Yang and Yau (1987) and slightly more conservative than 
those presented by Andrade and Camotim (2005).
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Kim, Y.D. and White, D.W. (2006c). “Elastic Lateral Tor-
sional Buckling Estimates for I-shaped Members with 
Linearly-Tapered Webs,” Structural Engineering Mechan-
ics and Materials Report No. 54, School of Civil and Envi-
ronmental Engineering, Georgia Institute of Technology, 
Atlanta, GA, 15 pp.

Kim, Y.D. and White, D.W. (2007a). “Practical Buckling 
Solutions for Tapered Beam Members,” Proceedings, 
Annual Technical Session, Structural Stability Research 
Council, University of Missouri, Rolla, MO, April, pp. 
259–278.

and
Kim, Y.D. (2010). “Behavior and Design of Metal Building 

Frames with General Prismatic and Web-Tapered Steel 
I-Section Members,” Doctoral Dissertation, School of 
Civil and Environmental Engineering, Georgia Institute 
of Technology, Atlanta, GA, 562 pp.

Applied the beam element developed by Chang (2006) to 
study the accuracy of the LTB approximation suggested by 
Yura and Helwig (1996) for linearly tapered members sub-
jected to various linear moment diagrams. Showed that the 
Yura and Helwig procedure gives an accurate estimate of the 
converged FEA solution. Improved results are obtained us-
ing the AASHTO (2004, 2007) Cb equation with the Yura 
and Helwig procedure.

Andrade, A., Camotim, D. and Dinis, P.B. (2007). “Lateral-
Torsional Buckling of Singly Symmetric Web-Tapered 
Thin-Walled I-Beams: 1D Model vs. Shell FEA,” 
Computers and Structures, Vol. 85, Issue 17–18, pp. 
1343–1359.

Evaluated the one-dimensional model developed by Andrade 
and Camotim (2003) for capturing the correct elastic LTB 
loads and buckling modes for prismatic and web-tapered 
cantilevers and web-tapered simply supported beams. 
Compared elastic LTB solutions obtained using the one-
dimensional beam model with the ones obtained by two-
dimensional shell finite element analyses. Concluded that the 
one-dimensional predictions agree well with the shell finite 
element analysis results with or without consideration of the 
pre-buckling deflections. Noted large differences between 
the one-dimensional and shell finite element models for 
shorter beams, which are mainly due to either significant 
web and flange distortion or a localized web buckling in the 
vicinity of the loading points.

Andrade, A., Providencia, P. and Camotim, D. (2010). 
“Elastic Lateral-Torsional Buckling of Restrained Web-
Tapered I-Beams,” Computers and Structures, Vol. 88, 
Issue 21–22, pp. 1179–1196.

Demonstrated how to include the effects of linear elastic 
or rigid restraints in the one-dimensional model previously 
developed by Andrade and Camotim (2003) to capture 
the elastic buckling behavior of doubly symmetric thin-
walled tapered beams. The considered restraints can be 
translational, torsional, minor-axis bending, and/or warping 
restraints. Illustrated that the use of prismatic elements, 
regardless of the number of elements considered, cannot 
provide the correct elastic LTB solutions for web-tapered 
I-section beams.

Beam and Beam-Column Design Resistances

Lee, G.C., Morrell, M.L. and Ketter, R.L. (1972). “Design of 
Tapered Members,” Welding Research Council Bulletin, 
No. 173, 1–32.

Summarized an experimental and analytical investigation 
conducted to determine the behavior of tapered members. 
The results were used to develop design formulas. A discus-
sion of special considerations required for analysis of frames 
including tapered members was included. Design aids for 
the determination of the effective length factor of a tapered 
column connected to a prismatic rafter were provided. The 
general design philosophy involved the application of modi-
fication factors adjusting the length to convert the tapered 
member to an equivalent prismatic member composed of 
the cross section at the shallower end for implicit calcula-
tion of the underlying elastic buckling strengths. Separate 
length modification factors were developed for St. Venant 
and warping torsion LTB resistances. The AISC ASD for-
mulas for prismatic members were then applied to determine 
the web-tapered member strength.

Morrell, M.L. and Lee, G.C. (1974). “Allowable Stresses for 
Web-Tapered Beams with Lateral Restraints,” Welding 
Research Council Bulletin, No. 192, 1–12.

and
Lee, G.C. and Morrell, M.L. (1975). “Application of AISC 

Design Provisions for Tapered Members,” Engineering 
Journal, AISC, 12(1), 1–13.

Continued the work of Lee et al. (1972). Improved the flex-
ural strength formulas from Lee et al. (1972) by incorpo-
rating the total resistance to lateral buckling and restraining 
effects of adjacent spans and accounting for moment or flex-
ural stress gradients along the member lengths. Developed 
four modification equations that relate to common cases 
in practice: (1) maximum moment within the middle seg-
ment of three adjacent segments, (2) larger bending stress at 
the larger end of two adjacent segments, (3) larger bending 
stress at the smaller end of two adjacent segments, and (4) 
single segment with zero bending at shallower end of the 
tapered member.
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Prawel, S.P., Morrell, M.L. and Lee, G.C. (1974). “Bending 
and Buckling Strength of Tapered Structural Members,” 
Welding Research Supplement, Vol. 53, February, 75–84.

Performed experimental tests of 15 linearly tapered I-shaped 
members to investigate the inelastic buckling strength. The 
members were fabricated using a one-sided continuous weld 
of the flanges to the web, producing an unsymmetrical pat-
tern of residual stresses with respect to the weak-axis of 
bending. Two sets of tapered members were tested: one fab-
ricated from plates that were shear cut and the other fabricat-
ed from oxygen cut plates. Two of the tests were beam tests 
containing three unbraced segments and loaded by quarter 
point loads to produce uniform bending stress in the center 
segment. One was a beam test loaded at the quarter points to 
produce a flexural stress gradient in the center segment. The 
other 12 tests were beam-column tests with lateral support 
only at the ends of the members, cantilevered from one end 
support and loaded at various angles from the horizontal to 
produce both axial compression and bending.

Falby, W.E and Lee, G.C. (1976). “Tension-Field Design 
of Tapered Members,” Engineering Journal, AISC, First 
Quarter 1976, 11–17.

Suggested four models for determining the shear tension-
field strength of I-girder web panels bounded by vertical 
stiffeners, a horizontal top flange, and a sloping bottom 
flange: (1) for taper angles less than about 4  degrees, use 
of the average h/tw and a/h with Basler’s tension-field equa-
tions; (2) for taper angles less than about 7 degrees, two 
different adaptations of Basler’s model in which the shear 
buckling contribution is calculated at the end of the panel 
at which the tension field diagonal intersects the top flange 
and in which the angle of inclination of the tension field is 
influenced by the depth at the opposite end of the panel; and 
(3) for taper angles greater than 7 degrees, a modified form 
of Basler’s model that assumes only a partial tension field.

Lee, G.C., Chen, Y.C. and Hsu, T.L. (1979). “Allowable 
Axial Stress of Restrained Multi-Segment, Tapered Roof 
Girders,” Welding Research Council Bulletin, No. 248, 
1–28.

Presented graphical procedures for determination of the axial 
resistance for restrained multi-segment rafters. Design aids 
were presented for determination of the effective length fac-
tor Kγ for in-plane buckling of these types of members. This 
factor modified the length of a prismatic member having the 
same cross-section properties as the smallest section of the 
tapered member, such that the critical stress was the same as 
the tapered roof girder. The properties of the modified pris-
matic member could then be used to determine an effective 
length factor for the tapered column using the design aids 
developed by Lee et al. (1972). The developed procedures 
were not incorporated into the AISC ASD provisions but are 
summarized in Lee et al. (1981).

Salter, J.B., Anderson, D. and May, I.M. (1980). “Tests 
on Tapered Steel Columns,” The Structrual Engineer, 
58A(6), 189–193.

Performed eight experimental tests on one-half to one-third 
scale web-tapered welded I-shaped beam-columns. The ends 
of each member were pinned, with twisting and warping pre-
vented. In three of the tests, lateral restraint was provided 
at the mid-length. The loading in all cases comprised axial 
load, together with a major-axis moment applied at one end. 
The five beam-columns without intermediate restraint failed 
by inelastic lateral-torsional buckling. Two of the beam-
columns where an intermediate restraint was attached to the 
tension flange (in flexure) failed in a torsional mode. In one 
test, the compression flange (in flexure) had an intermediate 
lateral restraint. The failure of this test was by buckling of a 
plate forming part of the lateral restraint, but the loads were 
significantly higher, the deflections were markedly nonlin-
ear, and the failure of the beam-column was judged to be 
imminent at this stage.

Lee, G.C. and Hsu, T.L. (1981). “Tapered Columns with Un-
equal Flanges,” Welding Research Council Bulletin, No. 
272, November, 15–23.

Presented design charts that address the strength of linearly 
tapered I-shaped members subjected to combined axial 
compression and major-axis bending and accounting for 
the different strength interaction curves associated with the 
flexural-torsional stability behavior of these types of mem-
bers (relative to in-plane resistances). These charts were not 
incorporated into the AISC ASD provisions.

Shiomi, H., Nishikawa, S. and Kurata, M. (1983). “Tests on 
Tapered Steel Beam-Columns,” Transactions of JSCE, 15, 
99–101.

and
Shiomi, H. and Kurata, M. (1984). “Strength Formula for 

Tapered Beam-Columns,” Journal of Structural Engi-
neering, 110(7), 1630–1643.

Experimentally tested 24 beam-columns of full size welded 
I-shapes. Nineteen tests were made on laterally unsupported 
members (OT-series tests), and five tests were on laterally 
supported members (IT-series tests). The ends of each mem-
ber were pinned, with twisting and warping prevented. The 
loading in all cases comprised axial load, together with a 
major-axis moment applied at one end.

Murray, T.M. (1986). “Stability of Gable Frame Panel Zone 
Plates,” Proceedings, Annual Technical Session, Struc-
tural Stability Research Council, University of Missouri, 
Rolla, MO, pp. 317–325.

Experimentally tested ten L-shaped specimens representing 
the knee area of gable metal building frames with compres-
sion on the inside flanges at the knee. Evaluated the shear 
strength of the panel zone web plates in the knee area, where 
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the web plate is supported on two sides by the continuation 
of the outside column and rafter flanges. A full-depth mo-
ment connection end plate, approximately aligned with the 
inside column flange supported the third side. Either a full-
depth or partial-depth column web stiffener approximately 
aligned with the inside rafter flange, supported the fourth 
side. The results showed that the AISC (2005) shear yield 
or shear buckling equations adequately predict the experi-
mental strengths for the different cases where the equations 
apply. However, the results indicated that Basler’s tension 
field equations as implemented in the AISC (2005) Speci-
fication accurately predict the panel zone strength only for 
specimens having full-depth column web stiffeners.

Sumner, E.A. III (1995). “Experimental and Analytical In-
vestigation of the LRFD Strength of Tapered Members,” 
M.S. Thesis, Charles Via Department of Civil Engineer-
ing, Virginia Polytechnic Institute and State University, 
Blacksburg, VA.

Studied the strength of the rigid knee portion of gable frames. 
Eight specimens consisting of a tapered column and a por-
tion of a tapered rafter were tested under three types of load-
ing that approximated gravity, lateral and cyclic load cases. 
Strengths calculated by AISC (1993) LRFD were compared 
with the experimentally determined capacities. The LRFD 
shear strength provisions were shown to be overly conserva-
tive. Procedures for application of the LRFD tension-field 
action model to account for the postbuckling strength of ta-
pered webs were presented. The application of tension field 
action to end panels, panels with large aspect ratios and hy-
brid girders was also addressed.

Polyzois, D. and Raftoyiannis, I.G. (1998). “Lateral-Tor-
sional Stability of Steel Web-Tapered I-Beams,” Journal 
of Structural Engineering, ASCE, 124(10), 1208–1216.

Reexamined the modification factor equations from Morrell 
and Lee (1974) and Lee and Morrell (1975) and suggested 
changes that cover a wider range of geometry and loading 
cases. Questioned the use of one modification factor to ac-
count for both the moment or stress gradient and the restraint 
provided by adjacent segments. Developed separate modifi-
cation factors for the stress gradient and the continuity ef-
fects for various load cases.

Jimenez Lopez, G.A. (1998). “Inelastic Stability of Tapered 
Structural Members,” Doctoral Dissertation, University of 
Minnesota, Minneapolis-St. Paul, MN, 201 pp.

Conducted inelastic analyses using the beam-theory-based 
slope-deflection equations from Lee et al. (1972) (for analy-
sis in the plane of bending) and accounting for initial out-of-
straightness, nominal Lehigh (Galambos and Ketter, 1959) 
residual stress effects. Determined inelastic LTB resistances 

for compact-section beams and beam-columns based on thin-
walled open-section beam theory equations and inelastic 
eigenvalue analysis. Compared inelastic analysis solutions 
to results from Salter et al. (1980), and Shiomi and Kurata 
(1984). Suggested a modified form of the equations from 
Lee et al. (1972) for design calculation of LTB resistances. 
Suggested a bilinear concave-up beam LTB strength curve 
for the inelastic transition region between 0.5Mp and Mp.

Miller, B.S. and Earls, C.J. (2003). “Behavior of Web-
Tapered Built-Up I-Shaped Beams,” Report CE/ST 28, 
Department of Civil and Environmental Engineering, 
University of Pittsburgh, 132 pp.

and
Miller, B.S. and Earls, C.J. (2003). “On Moment Capacity 

and Flexural Ductility in Doubly Symmetric Web-Tapered 
I-Girders,” Proceedings, Annual Technical Session, Struc-
tural Stability Research Council, University of Missouri, 
Rolla, MO, pp. 267–280.

Studied the inelastic strength and ductility of web-tapered 
I-shaped beams using full, nonlinear finite element models 
created with ABAQUS. Considered a geometric imperfec-
tion dominated by web bend buckling and elastic out-of-
plane bracing restraints. Did not consider residual stresses. 
Focused primarily on development of highly restrictive com-
pactness criteria necessary to satisfy an idealized rotation 
capacity of three at the location of plastic hinges in web-
tapered members.

Jimenez, G.A. (2006). “Further Studies on the Lateral-
Torsional of Steel Web-Tapered Beam-Columns,” Pro-
ceedings, Annual Technical Session, Structural Stability 
Research Council, University of Missouri, Rolla, MO, 
pp. 267–280.

Presented solutions for the elastic and inelastic lateral-tor-
sional buckling of linearly tapered web depth compact I-
shaped members. The beam-columns are subjected to axial 
force and to bending moments applied at both ends of the 
member. The Lehigh (Galambos and Ketter, 1959) resid-
ual stress pattern is assumed. Two types of solutions were 
considered: (1) finite difference solutions based on thin-
walled open-section beam theory, and (2) an ANSYS three-
dimensional Timoshenko beam finite element that includes 
cross section warping and accommodates linear web taper. 
The ANSYS solution gave slightly more conservative re-
sults. Comparisons were made with AISC (1999) Specifica-
tion equations and with five test results from Salter et al. 
(1980). Suggested a modified form of the equations from 
Lee et al. (1972) for design calculation of LTB resistances. 
Suggested a bilinear concave-up beam LTB strength curve 
for the inelastic transition region between 0.5Mp and Mp.
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White, D.W. and Kim, Y.D. (2006). “A Prototype Applica-
tion of the AISC (2005) Stability Analysis and Design 
Provisions to Metal Building Structural Systems,” Report 
prepared for Metal Building Manufacturers Association, 
School of Civil and Environmental Engineering, Georgia 
Institute of Technology, Atlanta, GA, January, 157 pp.

and
Kim, Y.D. (2010). “Behavior and Design of Metal Building 

Frames with General Prismatic and Web-Tapered Steel 
I-Section Members,” Doctoral Dissertation, School of 
Civil and Environmental Engineering, Georgia Institute 
of Technology, Atlanta, GA, 562 pp.

Developed a general procedure, based on AISC (2005), for 
calculation of I-shaped member flexural resistances. For 
handling of the LTB limit state, the procedure parallels the 
method developed by the authors for generalized calcula-
tion of the column axial resistance. That is, the method is 
based on the independent calculation of the member elas-
tic LTB resistance and the consideration of the compression 
flange stress at the most highly stressed cross section along 
the member length. Suggested a procedure from Yura and 
Helwig (1996) for calculation of the elastic LTB resistance 
of linearly tapered web depth members. This procedure is 
subsequently validated by Kim and White (2006c, 2007a), 
using elastic LTB solutions based on three-dimensional thin-
walled open-section beam theory. The general procedures for 
calculating member flexural resistances developed in White 
and Kim (2006) and Kim (2010) are evaluated by Kim and 
White (2008, 2010) and Kim (2010).

Kim, Y.D. and White, D.W (2006b). “Full Nonlinear Fi-
nite Element Analysis Simulation of the LB-3 Test from 
Prawel et al. (1974),” Structural Engineering Mechanics 
and Materials Report No. 56, School of Civil and Envi-
ronmental Engineering, Georgia Institute of Technology, 
Atlanta, GA, September, 15 pp.

Conducted full nonlinear finite element analysis using 
ABAQUS (HKS, 2006) for the beam test, LB-3 from Prawel 
et al. (1974). Four types of nominal residual stress patterns 
and three types of nominal geometric imperfections are test-
ed. The finite element solutions and the experimental result 
provided by Prawel et al. (1974) are compared to the design 
strength calculated based on the procedures provided by 
White and Kim (2006). Suggested a nominal geometric im-
perfection involving flange sweep and three types of residual 
stress patterns for studying available experimental tests using 
finite element analysis. If specific geometric imperfections 
and residual stresses are provided, these initial conditions 
are suggested to be used in finite element simulations. 

Kim, Y.D. and White, D.W. (2007b). “Assessment of Nomi-
nal Resistance Calculations for Web-Tapered I-shaped 
Members: Comparison to Experimental Tests and to Fi-
nite Element Simulations of Experimental Tests” Struc-
tural Engineering Mechanics and Materials Report No. 
31, School of Civil and Environmental Engineering, 
Georgia Institute of Technology, Atlanta, GA, May, 59 pp.

Presented design strength calculations for all the tests from 
Prawel et al. (1974), Salter et al. (1980), and Shiomi and 
Kurata (1984) based on the internal forces at the maximum 
test resistance. Full, nonlinear finite element simulations 
are generated for selected tests. For all the tests, the ex-
perimental results show more capacity than the calculated 
nominal resistance except the LB-5 test from Prawel et al. 
(1974). Suggested to calculate the LTB resistance by scal-
ing the LTB strength based on uniform flange stress with 
the stress gradient factor Cb. For all the tests governed by 
LTB in flexure, this approach predicts the flexural capacity 
that is close to the experimental test results. A residual stress 
pattern based on residual stress measurements by Prawel et 
al. (1974) is suggested by authors for further study of ex-
perimental tests unless a specific residual stress condition is 
defined otherwise.

Ozgur, C., Kim, Y.D. and White, D.W. (2007). “Consider-
ation of End Restraint Effects in Web-Tapered Members,” 
Structural Engineering Mechanics and Materials Report 
No. 32, School of Civil and Environmental Engineering, 
Georgia Institute of Technology, Atlanta, GA, June.

Adapted the design-based procedure developed by Nethercot 
and Trahair (1976) to the calculation of the elastic LTB resis-
tance of web-tapered members accounting for end warping 
restraint from adjacent less critical unbraced lengths. Ap-
plied this procedure with the procedures presented in this 
Guide to obtain refined estimates of inelastic LTB resistanc-
es of a number of web-tapered members. Compared calcula-
tions to the maximum experimental resistances from one test 
conducted by Salter et al. (1980) and several tests conducted 
by Shiomi and Kurata (1984). Noted that the design of mem-
bers using these types of procedures will in general increase 
the demands on the out-of-plane beam bracing system.

Kim, Y.D. and White, D.W. (2008). “Lateral Torsional 
Buckling Strength of Prismatic and Web-Tapered Beams,” 
Proceedings, Annual Technical Session, Structural 
Stability Research Council, Missouri University of 
Science and Technology, Rolla, MO, April, pp.155–174.

Kim, Y.D. and White, D.W. (2010). “ Lateral Torsional 
Buckling Strength of Prismatic and Web-Tapered Beams: 
Reliability Assessment,” Proceedings, Annual Technical 
Session, Structural Stability Research, Council, Missouri 
University of Science and Technology, Rolla, MO, May, 
pp.725–744.

and
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Kim, Y.D. (2010). “Behavior and Design of Metal Building 
Frames with General Prismatic and Web-Tapered Steel 
I-Section Members,” Doctoral Dissertation, School of 
Civil and Environmental Engineering, Georgia Institute 
of Technology, Atlanta, GA, 562 pp.

Evaluated the general procedures developed in White and 
Kim (2006) and Kim (2010) for calculation of nominal 
flexural strength of general nonprismatic members by virtual 
test simulation using full-nonlinear finite element analysis. 
Demonstrated that flexural resistances of nonprismatic 
members are essentially the same as the ones of equivalent 
prismatic members with a given moment gradient factor and 
a given most highly stressed section within their unbraced 
lengths. Also demonstrated that virtual test simulation 
tends to provide smaller flexural resistances compared to 
experimental test results and the current AISC (2005, 2010) 
and AASHTO (2004, 2007) provisions. Concluded that these 
differences are largely due to the geometric imperfections 
and internal residual stresses being smaller on average in 
the physical tests compared to common deterministic values 
assumed in virtual simulation studies. Also demonstrated 
that, for deeper thin-walled sections, the calculation of Mn 
based on a elastic buckling ratio including Cb effect, γeLTB (a 
general procedure presented in Section 5.4.3 in this guide) 
provides better estimates compared to virtual test simulation 
results than the calculation of Mn by scaling up the uniform 
bending resistance (a procedure for single linear tapered 
members presented in Section 5.4.3). Proposed separate sets 
of recommendations for improved calculations of nominal 
LTB resistances based on the reliability assessments of 
experimental test data (White and Jung, 2008; White and 
Kim, 2008; Rightman, 2005) and virtual test simulation 
results (Kim and White, 2008; Kim and White, 2010; 
Kim, 2010).

General Behavior and Design of Frames 
Composed of Tapered I-shaped Members

Lee, G.C. (1959). “On the Lateral Buckling of a Tapered 
Narrow Rectangular Beam,” Journal of Applied Mechan-
ics, 26, 457–458.

Established that for small tapering angles (15° or less), 
Euler-Bernoulli theory for beams yields satisfactory results.

Boley, B.A. (1963). “On the Accuracy of the Bernoulli-Euler 
Theory for Beams of Variable Section,” Journal of Ap-
plied Mechanics, 30, 373–378.

Found that normal stresses calculated using Euler-Bernoulli 
theory were accurate to within a few percent as long as the 
angle of taper was less than 15°.

Lee, G.C., Ketter, R.L. and Hsu, T.L. (1981). The Design of 
Single Story Rigid Frames, Metal Building Manufacturers 
Association, Cleveland, OH, 267 pp.

and
Galambos, T.V. (1988b). “Tapered Structural Members,” 

Guide to Stability Design Criteria for Metal Structures, 
4th Ed., Chapter 9, Wiley, New York, pp. 329–358.

Summarized the results from a multi-year research effort by 
the authors and numerous other investigators aimed at the 
design of steel single-story rigid frames. Presented meth-
ods that coordinated with and extended the AISC ASD ap-
proaches for design of prismatic members at the time of this 
work. The techniques discussed relied extensively on the use 
of charts and graphs. Six complete frame design examples 
were presented using AISC ASD provisions. The work sum-
marized in this book formed the basis of the following AISC 
Specifications:
Appendix D (AISC 1978) 8th edition ASD manual
Appendix F4 (AISC 1986) 1st edition LRFD manual
Appendix F7 (AISC 1989) 9th edition ASD manual
Appendix F3 (AISC 1993) 2nd edition LRFD manual
Appendix F3 (AISC 1999) 3rd edition LRFD manual

These provisions were not widely accepted by the industry 
due to the limited range of member geometries considered 
as well as the required usage of design charts. They were no 
longer included within the AISC (2005) Specification.

Jerez, L. and Murray, T.M. (1980a). “Rigid Frame Studies, 
Full Scale Frame Tests SRL04 50 20/25 16/25,” Progress 
Report to Star Manufacturing Company, Oklahoma City, 
OK, Fears Structural Engineering Laboratory, School of 
Civil Engineering and Environmental Science, University 
of Oklahoma, Norman, OK, July, 67 pp.

Jerez, L. and Murray, T.M. (1980b). “Rigid Frame Studies, 
Full Scale Frame Tests SRL04 60 40/25 20/20,” Progress 
Report to Star Manufacturing Company, Oklahoma City, 
OK, Fears Structural Engineering Laboratory, School of 
Civil Engineering and Environmental Science, University 
of Oklahoma, Norman, OK, July, 119 pp.

Forest, R. and Murray, T.M. (1981a). “Rigid Frame Studies, 
Full Scale Frame Tests STR 60 12/15 10/25,” Progress 
Report to Star Manufacturing Company, Oklahoma City, 
OK, Fears Structural Engineering Laboratory, School of 
Civil Engineering and Environmental Science, University 
of Oklahoma, Norman, OK, February, 83 pp.

Forest, R. and Murray, T.M. (1981b). “Rigid Frame Studies, 
Full Scale Frame Tests STR4 50 12/15 14/25,” Progress 
Report to Star Manufacturing Company, Oklahoma City, 
OK, Fears Structural Engineering Laboratory, School of 
Civil Engineering and Environmental Science, University 
of Oklahoma, Norman, OK, July, 145 pp.

and
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Forest, R. and Murray, T.M. (1982). “Rigid Frame Stud-
ies, Full Scale Frame Tests,” Research Report No. FSEL/
STAR 82-01, School of Civil Engineering and Environ-
mental Science, University of Oklahoma, Norman, OK, 
109 pp.

Tested four sets of two standard full-scale gable clear-span 
frames with 50- and 60-ft spans, a total of eight clear-span 
frames. One series had nonprismatic columns and rafters of 
shop-welded plates. The other series had prismatic columns 
and either prismatic or nonprismatic rafters. All the test 
setups consisted of two parallel frames spaced 24 ft apart. 
The tests were targeted at (1) verifying existing design pro-
cedures by Star Manufacturing Company to predict deflec-
tions and strength, (2) verifying design procedures published 
by Lee et al. (1981), and (3) determining bracing require-
ments for tapered steel members. Frame 1 failed due to an 
inadequate rafter compression flange brace near the knee. 
Frames 5 and 6 exhibited premature failures due to inad-
equate tightening of the end-plate moment connection bolts 
at the knees and at the ridge. Design predictions of vertical 
rafter deflections were accurate. Sidesway deflections were 
consistently smaller than predicted. This was due to the col-
umn base conditions, which were assumed perfectly pinned 
in the analysis. All the frames except 3 and 4 were tested un-
der simulated full live load conditions. For the full live load 
tests to failure, all the frames reached more than 90% of the 
predicted failure load except frames 5 and 6. Frames 3 and 
4 were tested using a combination of lateral load and unbal-
anced live load. These frames failed at 70% of the predicted 
lateral load failure level. In these tests, the stress gradient was 
small near the failure location and the stress was within 19% 
of the stress at failure under the vertical load alone. Hence, 
failure at this section translated into a significant reduction 
in the lateral load capacity. The test results were compared to 
the procedures suggested by Lee et al. (1981). A number of 
variations on the design assumptions were investigated. No 
consistent set of design rules adequately predicted the frame 
strengths for all the loading combinations.

Jenner, R.K., Densford, T.A., Astaneh-Asl, A. and Mur-
ray, T.M. (1985a). “Experimental Investigation of Rigid 
Frames Including Knee Connection Studies, Frame As-
sembly Tests,” Report No. FSEL//MESCO 85-01, Fears 
Structural Engineering Laboratory, School of Civil Engi-
neering and Environmental Science, University of Okla-
homa, Norman, OK, June, 184 pp.

Jenner, R.K., Densford, T.A., Astaneh-Asl, A. and Mur-
ray, T.M. (1985b). “Experimental Investigation of Rigid 
Frames Including Knee Connection Studies, Frame FR1 
Tests, Report No. FSEL//MESCO 85-02, Fears Structural 
Engineering Laboratory, School of Civil Engineering and 
Environmental Science, University of Oklahoma, Nor-
man, OK, July, 210 pp.

and
Jenner, R.K., Densford, T.A., Astaneh-Asl, A. and Mur-

ray, T.M. (1985c). “Experimental Investigation of Rigid 
Frames Including Knee Connection Studies, Frame FR2 
Tests, Report No. FSEL//MESCO 85-03, Fears Structural 
Engineering Laboratory, School of Civil Engineering and 
Environmental Science, University of Oklahoma, Nor-
man, OK, August, 263 pp.

Tested eight knee assemblies connected by a moment end-
plate connection and four clear-span frames with different 
types of columns and rafters. The knee assemblies were sub-
jected to a single applied force such that the internal forces 
in the specimens were approximately actual design values 
for combined dead and live loads. The frame tests were con-
ducted to study the accuracy of procedures for calculating 
frame strength and stiffness. Six load combinations were ap-
plied to the frames, including live load and wind load. All 
the knee area tests except one test failed due to panel zone 
plate yielding or buckling. One knee test failed due to yield-
ing of the rafter web plate. The knee tests demonstrated that 
the 2005 AISC plate girder web yielding, plate buckling, and 
tension field action provisions may be used to design panel 
zone web plates if h is defined as the depth of the plate at 
the rafter. However, the investigators concluded that panel 
zone tension field action strengths should only be considered 
if a full-depth column web stiffener is used adjacent to the 
inside rafter flange, and that this stiffener must be welded to 
both column flanges and the column web. The frame tests 
failed at loads smaller than predicted failure loads using the 
measured cross section properties and coupon test results. 
The investigators concluded that the reason for the underca-
pacity of the experimental tests was the knee area flexibility, 
which caused an adverse redistribution of moments within 
the frames. This conclusion led to a suggestion for the use of 
thicker panel zone web plates.

Watwood, V.B. (1985). “Gable Frame Design Consider-
ations,” Journal of Structural Engineering, ASCE, 111(7), 
1543–1558.

Discussed the sensitivity of an example clear-span gable 
frame to the assumed boundary conditions at the foundation 
level and to unbalanced gravity load. Discussed the calcu-
lation of the effective length for rafters, accounting for the 
rafter axial compression and the coupling with the sidesway 
stability of the overall structure. Suggested an approach to 
design of rafters subjected to significant axial compression 
that in essence takes the buckling load of the rafters as the 
axial force level in these members at incipient sidesway 
buckling of the full structure. This approach is equivalent to 
using an effective length factor for the rafters significantly 
larger than one for the example frame considered. White and 
Kim (2006) suggest that this approach to the design of the 
rafters is unnecessarily conservative.
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Eroz, M., White, D.W. and DesRoches, R. (2008). “Direct 
Analysis of Gabled Frames with Partially Restrained Col-
umn Base Conditions,” Journal of Structural Engineer-
ing, ASCE, 134(9), 1508–1517.

Developed a refined elastic-plastic component-based model 
of a representative nominally simple four-bolt base detail 
along with an intermediate to low value for the founda-
tion stiffness from a spread footing. Studied the influence 
of the incidental restraint from these base conditions on 
the strength unity checks and the service deflections for a 
gable clear-span metal building frame. Used the procedures 
presented in this Guide for the strength limit states checks. 
Compared the results using the refined base model to results 
determined assuming ideally pinned base conditions and us-
ing nominal elastic springs equivalent to G = 10 in the AISC 
sidesway-uninhibited alignment chart. Observed a similar 
but marginal decrease in the member strength unity checks 
by using either the refined base model or the elastic G = 
10 base model. The refined base model reduced the maxi-
mum service vertical and lateral deflections of the frame by 
nearly 10 and 20%, respectively, whereas the G = 10 base 
model reduced these deflections by approximately 2 and 
9%, respectively.

Kim, Y.D. (2010). “Behavior and Design of Metal Building 
Frames with General Prismatic and Web-Tapered Steel 
I-Section Members,” Doctoral Dissertation, School of 
Civil and Environmental Engineering, Georgia Institute 
of Technology, Atlanta, GA, 562 pp.

Provided detailed comparisons of 2D analysis results based 
on the AISC (2005) direct analysis and effective length 
methods as well as design calculations based on proposed 
design procedures. Conducted virtual test simulation of an 
entire frame system using a 3D full-nonlinear finite element 
analysis for two metal building framing systems. Discussed 
the results of virtual test simulation compared to the design 
check results of the two metal building frames.

Davis, B.D. (1996). “LRFD Evaluation of Full-Scale Metal 
Building Frame Tests,” M.S. Thesis, Charles Via Depart-
ment of Civil Engineering, Virginia Polytechnic Institute 
and State University, Blacksburg, VA, 255 pp.

Compared results from design strength calculations using 
AISC LRFD to experimental strengths measured from two 
full-scale tests of clear-span gable clear-span frames. Local 
buckling of the rafter flanges governed the design resistances 
as well as the experimental failure modes. The predictions of 
the experimental resistances were consi  stently conservative 
by a small margin.

White, D.W. and Kim, Y.D. (2006). “A Prototype Applica-
tion of the AISC (2005) Stability Analysis and Design 
Provisions to Metal Building Structural Systems,” Report 
prepared for Metal Building Manufacturers Association, 
School of Civil and Environmental Engineering, Georgia 
Institute of Technology, January, 157 pp.

Demonstrated how the AISC (2005) direct analysis method 
can be applied to general metal building structural systems. 
The direct analysis method is shown to provide the follow-
ing distinct advantages:
• Its basis with respect to the handling of stability effects 

is more logical and straightforward.

• It provides an improved representation of the internal 
forces and moments throughout the structure at the 
strength limit of the most critical member or members.

• No K factor calculations are required.

• The design of all types of braced, moment and combined 
framing systems is handled in a unifi ed and consistent 
fashion.

Provided detailed design calculations and comparisons to 
results using the AISC (2005) effective length method for a 
representative clear-span frame and a representative modular 
frame. Explained that the design behavior of metal building 
frames is typically dominated by flexure with the possible 
amplification of internal moments due to second-order ef-
fects. Showed that the effective length method places ex-
cessive emphasis on the stability behavior under a fictitious 
loading involving only concentric axial compression in the 
frame members.
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 APPENDIX A
Calculating γγeL or PeL for Tapered Members

PeL is the nominal elastic flexural buckling strength of a 
member having ideal pinned-pinned end conditions. Be-
cause the internal axial force may vary along the member 
length, it is generally more convenient to work with the 
equivalent parameter, γeL. The nominal elastic buckling force 
in the column at any point for a particular load combination 
is γeL multiplied by the required strength in the column at that 
point, i.e., PeL = γeLPr. In terms of stresses, the nominal elastic 
buckling stress in the column at any point for a particular 
load combination is γeL multiplied by the required stress in 
the column at that point.

For a straight, geometrically perfect prismatic column 
with a constant axial force,
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For a tapered I-shaped member subjected to constant or 
varying internal axial force, there is no practical exact 
closed form solution for PeL or γeL. The following procedures 
are recommended for calculating PeL and/or γeL for tapered 
members.

 A.1 EQUIVALENT MOMENT OF INERTIA

For tapered members subjected to constant internal axial 
loading, with a single taper angle and no change in the web 
or flange plates over the length, the following empirical 
equation gives results accurate to within several percent for 
the range of members considered in this document. This 
equation provides the flexural buckling strength of a pris-
matic member of the same length using an equivalent mo-
ment of inertia:
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where:
I′ =  equivalent moment of inertia
 =  strong axis moment of inertia of the seg-

ment calculated using the depth at 0.5L 
(Ismall / Ilarge)0.0732 from the small end

Ismall =  strong-axis moment of inertia at the small end
Ilarge = strong-axis moment of inertia at the large end
L  =  length of the tapered member

Example:
bf = 8.00 in.
tf = 0.500 in.
tw = 0.188 in.
hleft = 18.0 in.
hright = 36.0 in.
L = 360 in.
αPr = 100 kips (α = 1.0 for LRFD and 1.6 for ASD)

Calculate moments of inertia at each end (not shown)
Ismall = 776 in.4

Ilarge = 3,400 in.4

Calculate location of equivalent depth
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With a required axial force of 100 kips
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The equivalent moment of inertia, I′, is intended for use only 
with Equation A-3.

Table A-1 shows a comparison of Equation A-3 with re-
sults from the method of successive approximations solution 
using 10 elements for a range of parameters. Note that the 
accuracy of the results is independent of member length.
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For linearly tapered members subjected to nonuniform 
axial compression, γeL can be calculated conservatively as 
PeL/(Pr)max, where PeL is calculated from Equation 4.5-4 and 
(Pr)max is the maximum internal axial compression along the 
member length.

Equation A-3 also may be applied to determine the value 
of Peℓ for linearly tapered member segments for use in de-
termining the number of elements required per member for 
second-order analysis and for determining P-δ moments be-
tween element nodal locations.

 A.2 METHOD OF SUCCESSIVE 
APPROXIMATIONS

PeL and/or γeL can be determined by using the method of suc-
cessive approximations (Timoshenko and Gere, 1961). This 
technique uses an iterative beam analysis to find the axial 
load, γeLPr, at which the beam deflections resulting from ap-
plied P-δ moments are a uniform multiple, γeL, of the deflec-
tions assumed to calculate the P-δ moments. This method 
can handle multiple tapers, plate changes, and changes in 
axial loading along the length of the member.

The general procedure is as follows:

1. Assume an initial deflected shape of the member due 
to the P-δ moments. The method will converge for 
any reasonable initial assumption, but will converge 

with less iteration as the accuracy of the initial as-
sumption increases.

2. Calculate the moments along the length of the mem-
ber due to the required axial load at each point multi-
plied by the deflection at each point.

3. Perform a beam deflection analysis on the simple 
span beam using these moments to determine a new 
deflected shape.

4. If the deflections at the points along the member are 
a constant multiple of the assumed deflections, the 
analysis is complete and γeL is equal to this multiplier.

5. If the deflections at each point along the member are not 
a constant multiple of the assumed deflections, return 
to step 2 and proceed using the new deflected shape.

6. PeL at any point is equal to γeL × Pr, the axial load used 
at that point in the analysis.

Suggested implementation details based on Timoshenko and 
Gere (1961) and Newmark (1943) are:

1. Model the member by dividing it into a number of 
analysis elements with nodes at each end [“stations” 
in Timoshenko and Gere (1961)]. Nodes should be 
located at the ends of the member and changes in 
plates, taper or loading. Add additional nodes at a 
reasonable spacing between these. The accuracy of 
the method increases as the fineness of subdivision is 

Table A-1. Equivalent Moment of Inertia Accuracy

Length, 

in.

bf,
in.

tf,
in.

tw,
in.

hsmall,
in.

hlarge,
in.

Ismall,
in.4

Ilarge,
in.4

l′′,
in.4

PeL (kips)

Equation 

A-3

Successive 

Approx.
% Err

120

5.0 0.188 0.188 8.0

10.0

39.54

64.46 50.67 1007 1008 -0.05

20.0 316.9 119.3 2371 2380 -0.36

30.0 851.3 209.5 4165 4177 -0.30

40.0 1762 321.4 6387 6392 -0.08

8.0 0.50 0.188 8.0

10.0

152.7

236.3 190.8 3792 3793 -0.02

20.0 966.0 414.2 8233 8237 -0.04

30.0 2284 691.6 13747 13724 0.17

40.0 4283 1021 20289 20211 0.39

240

5.0 0.188 0.188 8.0

10.0

39.54

64.46 50.67 252 252 -0.05

20.0 316.9 119.3 593 595 -0.36

30.0 851.3 209.5 1041 1044 -0.30

40.0 1762 321.4 1597 1598 -0.08

8.0 0.50 0.188 8.0

10.0

152.7

236.3 190.8 948 948 -0.02

20.0 966.0 414.2 2058 2059 -0.04

30.0 2284 691.6 3437 3431 0.17

40.0 4283 1021 5072 5053 0.39
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increased. Do not include any angle changes or out-
of-straightness in the model, even if they are present 
in the actual member.

2. To compute the deflection of the beam subject to 
the P-δ moment diagram, use the conjugate beam 
method. The applied loading for the analysis is the 
M/EI diagram from the assumed P-δ moments. Ti-
moshenko and Gere give expressions for station point 
concentrated loads equivalent to the M/EI loading on 
the conjugate beam approximated by piecewise lin-
ear or parabolic segments. These equivalent concen-
trated load expressions approximate the continuously 
curved M/EI diagram, and simplify the calculations.

The concentrated load expressions provided by Timoshenko 
and Gere (1961) are listed in Table A-2 in the column labeled 
“Equal Length Segments.” These expressions are based on 
the assumption that the member is divided into segments of 
equal length. Also included in Table A-2 are generalized ver-
sions of these functions that can be used at stations where 
segments of unequal length meet. This often occurs at a 
change of plates or taper. Note that for multi-linear M/EI 
cases, the calculation of the end reactions Rm and Ro requires 
equivalent concentrated loads only at the station correspond-
ing to the reaction and at the adjacent station. The parabolic 
functions require three adjacent equivalent concentrated 
load values of M/EI; thus, any segment should be divided 
into a minimum of two parts if these expressions are used. 
The use of the parabolic expressions is recommended since 

they better approximate the shape of the M/EI diagram and 
result in greater accuracy for a given level of subdivision.

Any beam span analysis method capable of accurately 
analyzing an applied loading in the shape of the P-δ moment 
diagram divided by EI can be used in lieu of the conjugate 
beam method. The method will converge to an accurate solu-
tion given any reasonable initial deflection assumption, but 
will converge more quickly with a better starting guess. A 
first approximation using the deflected shape from a uniform 
transverse loading on the member produces good results.

Although a tapered member may have an internally 
curved centroidal axis due to unsymmetrical flanges or have 
kinks or offsets in the centroidal axis due to changes in ge-
ometry (such as at the ridge of rafters, pinch points in raf-
ters or columns, or changes in cross section at any location 
within a frame), the P-δ moment calculations and beam span 
analysis should be conducted assuming a straight centroidal 
axis. Otherwise, the successive approximation method will 
not yield a unique buckling multiplier. Any bending mo-
ments arising from centroidal axis out-of-straightness are 
ultimately accounted for in the beam-column strength inter-
action equations.

It is recommended that engineers run the benchmark prob-
lems in Appendix C to establish the accuracy of their soft-
ware and select a fineness of meshing appropriate for design. 
Appendix Section C.3 provides detailed calculations for γe 
and PeL for two web-tapered columns using this method.

Table A-2. Equivalent Concentrated Loads

 Equal Length Segments Unequal Length Segments

Multi-Linear M/EI
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 A.3 EIGENVALUE BUCKLING ANALYSIS

PeL and/or γeL can be determined by an elastic eigenvalue 
buckling analysis. Many advanced finite element and/or 
frame analysis programs can calculate elastic buckling mul-
tipliers, γeL, for any assumed reference axial loading using 
numerical eigenvalue techniques. PeL is then determined as 
the required axial compression strength, used as a reference 
load in the analysis, multiplied by γeL. The quality of such 
solutions depends on the accuracy of the tapered member 
modeling, element choice, and meshing. Computer programs 
that include only P-Δ effects will require finer subdivision 
than those that incorporate P-Δ and P-δ effects in their el-
ements. The engineer should run the benchmark problems 
provided in Appendix C to establish the appropriateness of 
the computer program and modeling techniques prior to use 
in design.

Some care must be taken, possibly including review of the 
selected eigenvalue buckling mode shape by the engineer, to 
ensure that the lowest eigenvalue buckling mode has been 
determined. Although this technique has the advantage of 
handling essentially any imaginable geometry and loading, 
it may not be practical in a production environment unless 
the eigenvalue buckling solution is automated and integrated 
into the analysis-design software.

The preceding comments address only the calculation of 
member buckling loads, PeL, or the buckling load ratios, γeL, 
based on the assumption of idealized pinned-pinned end 
conditions. The reader is referred to Section 6.3.2 and to 
Appendix B for discussion of methods for calculating the 
buckling load of members such as rafters in clear-span gable 
frames or fixed-base columns in braced frames accounting 
for the influence of end restraint from adjacent members 
and/or base conditions. These procedures may be used to ad-
dress the in-plane stability effects in these types of members 
when designing by the ELM.
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 APPENDIX B
Calculating In-Plane γγe Factors for the ELM

For frames with sufficiently low ratios of sidesway 
Δ2nd /Δ1st ≈ B2, the AISC Specification permits the use of an 
in-plane effective length factor, K, of 1.0 for each of the three 
design methods listed in the AISC Specification (DM, ELM, 
and FOM). For frames with Δ2nd /Δ1st (or B2) smaller than 1.1, 
the ELM may be used with K = 1.0. For frames with ratios 
of Δ2nd /Δ1st (or B2) above 1.5, the AISC Specification only 
permits the use of the DM, where K = 1.0. Consequently, 
there is no need to calculate buckling loads or γe factors other 
than those for simply supported conditions in either of these 
cases. For frames with Δ2nd /Δ1st (or B2) between 1.1 and 1.5, 
the engineer may choose to use the ELM. However, in this 
case, the effective length factors (or γe factors) must be cal-
culated “from a sidesway buckling analysis of the structure” 
(AISC, 2005).

 B.1 COLUMNS

The annotated bibliography in Chapter 7 reviews the past 
efforts at establishing procedures for the calculation of flex-
ural buckling loads or effective length factors for tapered 
columns. The methods selected for inclusion in previous edi-
tions of the AISC Specification relied heavily on charts and 
graphs and had significant restrictions with regard to geom-
etry and loading that limited their acceptance in the industry. 
The following methods do not require the use of charts or 
graphs and are adaptable to a wider range of structures.

 B.1.1 Modifi ed Story-Stiffness Method

The following modified story-stiffness method (White and 
Kim, 2006) is recommended for typical metal building 
frames that are rectangular or nearly rectangular in geometry.

Determine the story buckling multiplier, γe, story as:

 

γe, story
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where
Pi = axial load in column i, kips
Li = length of column i, in.
H =  Total applied horizontal shear within the story, 

equal to the total applied horizontal load in 
single-story frames, kips.

ΔH =  average story drift due to the horizontal load, 
H, in.
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Σleaning = summation over all leaning (pin-ended) columns
Σall = summation over all columns

γe is then taken as the γe.story value for in-plane buckling of the 
sidesway resisting columns in the column strength design 
procedure given in Section 5.3, but not less than γeL. If ΣallPi/Li 
is zero, or if there is a net vertical tension in the story, take γe 
for any individual column in compression as γeL.

H and ΔH may be calculated using a unit or arbitrary lat-
eral loading at the rafter level in a first-order stiffness analy-
sis. For frames with unequal height columns and/or gable 
frames, H should be subdivided and applied at the tops of the 
columns in proportion to the value of Pi/Li for each column. 
This gives the most accurate representation of the sidesway 
stability effects and results in more uniform value of the story 
drift at the top of each of the columns. In most situations, the 
variation of (Pi/Li)/Σall (Pi/Li) among different load combina-
tions is small; therefore, it is usually acceptable to determine 
H/ΔH from a single lateral load analysis based on any one of 
the design load combinations. If significant axial forces are 
present in the rafters in any load combination, the moment 
of inertia of the rafters should be reduced for that load com-
bination in the preceding first-order analysis per Equation 
6-1a. The largest rafter stiffness reduction for any combina-
tion can be conservatively used for all combinations.

The influence of incidental column base rotational restraint 
associated with the traditional G = 10 for nominally simple 
base conditions or G = 1 for nominally fixed base conditions 
is addressed in Equation B-1 by including the equivalent elas-
tic rotational springs at the column bases in the model used 
to calculate ΔH. Specific guidelines for these calculations are 
provided by Eroz, White and DesRoches (2008).

 B.1.2  Eigenvalue Buckling Analysis

γe factors can be determined by an elastic eigenvalue buck-
ling analysis. The eigenvalue analysis should be conducted 
using a second-order solution and an adequate number of 
elements must be employed. The elastic buckling multiplier 
for in-plane sidesway for the entire frame, γe.story, is deter-
mined from an eigenvalue analysis of the frame. The γe fac-
tor for each column is then taken as γe.story.
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For single-story metal building frames, the lowest eigen-
value or first buckling mode from the eigenvalue analysis is 
usually the in-plane sidesway buckling mode. In rare cases 
such as gable frames with fixed-column bases combined 
with long rafter spans, the sidesway mode may be a higher 
eigenvalue mode.

B.1.2.1  Eigenvalue Buckling Solutions 
Using P-Δ-Only Analysis

Generally, a larger number of elements is required to obtain 
accurate eigenvalue sidesway buckling analysis solutions 
compared with the number specified for accurate load-de-
flection analysis in Sections 6.2.1 and 6.2.2. For sidesway-
uninhibited columns with simply supported base conditions, 
the maximum potential errors of P-Δ-only buckling analyses 
are listed in Table B-1.

For sidesway-uninhibited columns with rotationally re-
strained base conditions, the maximum potential errors of 
P-Δ-only buckling analyses are listed in Table B-2. The per-
centage error is the same for one or two elements per column 
because, with equal rotational restraints at the column ends, 
the lateral displacement of a node at the column mid-length 
is the average of the member end lateral displacements. 
Therefore, the element chord rotation is the same in both of 
the column elements in a two-element solution.

B.1.2.2  Eigenvalue Buckling Solutions Using Elements 
That Include Both P-Δ and P-δ Effects

With the use of a more accurate element formulation that in-
cludes P-δ effects in the element stiffness matrices, a smaller 
number of elements is generally possible. For sidesway-
uninhibited columns with simply supported or fixed-base 
conditions, the maximum potential error for elements de-
rived based on a cubic transverse displacement assumption 
is approximately 1% using a single element per member.

All the preceding error limits are based on the assumption 
that the elastic stiffness of nonprismatic members is repre-
sented with negligible error in the matrix analysis solution. 

 B.2 RAFTERS

In general, buckling multipliers for rafters calculated using 
the preceding story buckling procedure will be excessively 
conservative, because the rafters are typically not participat-
ing directly in the frame in-plane buckling except to provide 
rotational stiffness to the tops of columns moment connected 
to the rafters. For this reason, the effective length factor of 
rafters moment-connected to columns have typically been 
taken as 1.0 by the industry with success.

An important question is that of the effective length of the 
rafter in a gable span with no vertical support at the gable 
ridge. A common industry practice has been to consider the 
effective length to be the distance from the column to the 
ridge if the roof slope is above some critical value. How-
ever, due to the spreading apart of the columns under gravity 
loads or under a buckling mode involving instability of the 
rafters in gable frames, the rafters generally tend to act more 
like a single member having a length equal to the overall 
on-slope length along the rafters Los. Nevertheless, for clear-
span gable frames with relatively short column heights from 
the base to the eaves, the columns tend to provide substantial 
rotational restraint to the ends of the rafters, such that the ef-
fective length factor, K, corresponding to Los is close to 0.5. 
However, as column heights increase relative to the rafter 
span, the rafter effective length begins to increase signifi-
cantly above the value of 0.5 often assumed. It is therefore 
recommended that rafter buckling multipliers be calculated 
using realistic end-restraint conditions. The influence of the 
axial compression in the columns on the restraint that they 
provide at the rafter ends should be considered.

 B.2.1  Eigenvalue Buckling Analysis

Rafter γe factors can be determined by an elastic eigenvalue 
buckling analysis in a manner similar to that described for 
the columns in the previous section. The eigenvalue analysis 

Table B-1. Maximum γγ e Error for Sway Columns

with Simply Supported Bases, P-Δ Analysis

Elements per Column Maximum Error for γγ e, %
1 22

2 5

3 2

Table B-2. Maximum γγ e Error for Sway Columns with 

Top and Bottom Rotational Restraint, P-Δ Analysis

Elements per Column Maximum Error for γγ e, %
1 22

2 22

3 9

4 5

6 2
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should be conducted using a second-order solution, and an 
adequate number of elements must be employed. The lowest 
elastic multiplier for in-plane buckling of the rafter, γe.rafter, is 
determined from an eigenvalue analysis of the frame.

In single-story clear-span gable frames, the lowest eigen-
value buckling mode of a rafter is seldom the lowest mode 
of the entire frame, except in rare cases such as frames with 
fixed column bases and short eave heights combined with 
long rafter spans. In most cases, γe.rafter should be taken as 
the second lowest buckling eigenvalue. The engineer must 
in general inspect the buckling mode shapes to interpret 
whether the lowest or next lowest eigenvalue should be used 
for a given member. For modular frames and in floor gird-
ers of multi-story frames, the axial load level in the rafters 
at buckling is typically quite small. In these cases, use of 
anything other than γeL (K = 1) is hardly worthwhile for the 
rafters and/or floor girders.

B.2.1.1  Eigenvalue Buckling Solutions 
Using P-Δ-Only Analysis

For sidesway restrained columns and rafters with general 
end conditions, the maximum potential P-Δ-only buckling 
analysis errors are provided in Table B-3.

The maximum error for three elements is larger than for 
two elements because, for a prismatic member with both 
ends fully restrained, the use of three P-Δ elements actually 
increases the error in the calculation of the buckling load 
to 37% compared to an error of 22% using four elements. 
The two-element solutions exhibit the largest error in the 
buckling load (36%) when one end of the member is ideally 
pinned and the other end is ideally fixed.

If one compares these requirements to those listed in 
Table 6-3 of Section 6.2.1, it can be observed that the num-
ber of elements required to obtain accurate eigenvalue 
results is generally larger than that required to obtain accu-
rate required second-order internal forces.

B.2.1.2  Eigenvalue Buckling Solutions Using Elements 
That Include Both P-Δ and P-δ Effects

With the use of a more accurate element formulation that 
includes P-δ effects in the element stiffness matrices, a sig-
nificantly smaller number of elements is generally possible. 
For sidesway-inhibited columns and rafters with general end 
conditions, one should always have a node near the middle 
of the span. With the use of two approximately equal length 
elements of this type, the maximum potential error in the 
buckling analysis is approximately 3% (Guney and White, 
2007).

All the preceding error limits are based on the assumption 
that the elastic stiffness of nonprismatic members is repre-
sented with negligible error in the second-order analysis so-
lution.

 B.2.2  Method of Successive Approximations

Rafter γe factors can be calculated using the method of suc-
cessive approximations in a manner similar to that presented 
in Appendix A for calculating γeL. For the case of rafters with 
simple supports at both ends, the Appendix A method may 
be used exactly as shown. For the more common case, where 
the rafter ends are attached to columns and/or adjacent raf-
ters with fully or partially restrained connections as defined 
by AISC (2005), the earlier method is still valid if the beam 
deflection analysis is conducted accounting for the rotational 
stiffness of the connections and/or the adjacent members at 
the rafter ends.

The rotational stiffness of each adjacent connected mem-
ber can be determined using a stiffness model with a pinned 
support condition at the connection to the rafter, applying a 
unit end moment to that end and dividing the applied mo-
ment by the resulting end rotation. The end condition of the 
far end of the member should be representative of the actual 
conditions in the frame. If significant axial load is present 
in the adjacent member, the calculated rotational stiffness 

should be multiplied by 1−
αP

P
r

eL

, where PeL is calculated 

using one of the methods in Appendix A.
The successive approximations procedure directly pro-

duces a γe for in-plane flexural column buckling, which can 
be used in the column strength evaluation in Section 5.3.

 B.3 THE RELATIONSHIP BETWEEN K AND γγe

Given a set of values for γe and γeL corresponding to in-plane 
flexural buckling, where γeL is based on idealized pinned-
pinned end conditions and a given member length, L, the cal-
culation of a member effective length factor is quite simple. 
The effective length factor can be determined as

 
K eL

e

=
γ
γ

 (B-3)

Table B-3. Maximum γγ e Error for Rafters 

and Nonsway Columns, P-Δ Analysis

Elements per Rafter Maximum Error for γγ e, %
1 NA

2 36

3 37

4 22

6 10

8 5

16 1
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That is, for any member geometry, the effective length factor 
is tied to the ratio of the buckling load accounting for the 
interaction of the member with adjacent components and/or 
with the overall structural system (γe) and the buckling load 
using idealized pinned-pinned end conditions. Equation B-3 
is equivalent to Kγ in the discussions of prior developments 

in Section 2.1 and Chapter 7 of this Guide. Generally, Fe = 
γe fr is the important quantity for determination of the member 
axial compression resistance. For nonprismatic members, 
the preceding effective length factor is useful only as an indi-
cator of the effect of adjacent components and/or the overall 
structural system on the member stability.
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 APPENDIX C
Benchmark Problems

so it is important to check accuracy at the highest per-
centage of the elastic buckling load that will be used. 
The axial load level of αPr /Pcr = 0.67 corresponds to a 
ratio of Δ2nd/Δ1st in the vicinity of 3.0, which is within 
the range encountered in metal building construction.

 C.1 PRISMATIC MEMBERS

Table C-1a defines five cases of loading and end conditions 
that cover a range of conditions encountered in metal build-
ings. Table C-1b gives accurate closed formed solutions for 
deflections, moments and Pcr for each case. It is suggested 
that the correctness of software be verified at levels up to 
at least αPr /Pcr = 0.67 using these prismatic cases before 
progressing to the verification of tapered members.

 C.2 TAPERED MEMBERS

Presented here are several web-tapered benchmark problems. 
Because practical closed-form solutions are not available, 
the results are presented numerically. Additional discussion 
regarding the first two examples can be found in Kim and 
White (2006a). 

The first-order analysis stiffness coefficients presented are 
derived with all degrees of freedom other than the one un-
dergoing a unit displacement or rotation fully restrained. For 
the buckling strengths, sidesway deflections and sidesway 
moments, the values are derived using the “displacement 
boundary conditions” given for each example. The loads αPr 
and H and the displacement boundary conditions are applied 
at the centroid of the member end cross sections. The loads 
αPr and H are oriented parallel and perpendicular to a chord 
connecting these cross section centroids. For programs that 
require the outside flange of the column to be vertical and 
the applied loads to be vertical and horizontal, a coordinate 
transformation may be applied to the loads αPr and H to ob-
tain the appropriate vertical and horizontal loads. In each of 
the cases, the symbols Am and Im denote the area and moment 
of inertia with respect to the centroidal axis at the mid-span 
of the member. The ratios of the area and moment of inertia 
at the large end (AL, IL) and the small end (As, Is) to Am and 
Im are also shown.

This appendix provides a series of benchmark problems 
with closed formed and/or numerical solutions. These are 
intended to be used by the developers and users of software 
to establish the correctness and accuracy of their analysis 
procedures. Although the subject of this document is web-
tapered members, solutions for prismatic members are also 
provided. These can be used to establish the correctness us-
ing prismatic members prior to adding the complexity of ta-
pered members. 

Three types of benchmark solutions are provided.

1. Member stiffness coeffi cients: Highly accurate fi rst-
order member stiffness coeffi cients for four different 
tapered member geometries. These can be used in 
evaluating the accuracy of the fi rst-order part of the 
calculations. Developers can compare these coef-
fi cients with those generated within their programs. 
Software users can model these members with the cor-
responding end conditions and loadings for each of the 
columns in the stiffness matrices and compare the re-
sults with those provided (i.e., the stiffness coeffi cients 
Kij correspond to the force at degree of freedom (dof) i 
due to a unit displacement at dof j; unit load can be ap-
plied at a single unrestrained dof for the member, then 
the corresponding displacement at this dof δi can be 
determined from the fi rst-order analysis software and 
all the nodal forces may then be scaled by δj /1.0 for 
comparison to the values in column j of the stiffness 
matrix). Note that in all cases, all degrees of freedom 
are assumed to be fi xed except the one released at the 
location of the applied load.

2. Axial in-plane elastic buckling strengths: These are 
used to verify the correctness of calculated values of 
PeL, Pe, γeL and γe.

3. Second-order member displacements and moments: 
Solutions are provided for second-order displacements 
and bending moments under varying levels of axial 
load. It is recommended that software accuracy be es-
tablished for prismatic members at axial load levels up 
to at least αPr /Pcr = 0.67, unless even higher levels are 
to be used. In general, the accuracy of second-order 
solutions will decline as the axial load level increases, 
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Table C-1a. Prismatic Benchmark Problems—Cases

Case End Conditions and Loading

1

2

3

4

5

Table C-1b. Prismatic Benchmark Problems—Deflections, Moments and Pcr

Case
First-Order Second-Order

Δ M1 Pcr Δ M1

1
HL

EI

3

3
HL

PeL

4

HL
EI u

3

33

3

2

tan 2u − 2u( )
( )

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

HL
u

u
tan2

2
⎡
⎣⎢

⎤
⎦⎥

2
HL

EI

3

12

HL
2

PeL
HL

EI u

3

312

⎡

⎣
⎢

⎤

⎦
⎥

3 tan u − u( ) HL u
u2

tan⎡
⎣⎢

⎤
⎦⎥

3
5
384

4wL
EI

wL2

8
PeL

sec u − u  − 25
384

12 2

5

4 2

4

wL
EI u

( )⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

wL u

u

2

28

2 1sec −( )⎡

⎣
⎢

⎤

⎦
⎥

4
wL

EI

4

384
wL2

12
4 PeL

wL
EI u u

4

3384

12 2 − 2cos u − usin u( )⎡

⎣
⎢

⎤

⎦
⎥

sin
wL u u

u u

2

212

3 tan

tan

−( )⎡

⎣
⎢

⎤

⎦
⎥

5
wL

EI

4

192
wL2

8
2.05 PeL

wL
EI u

u u u

u u
192

6 1

1
2

1
2

4

4 (tan )(sec )

tan

− − −

−⎛

⎝
⎜

⎞

⎠
⎟

⎡

⎣
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⎢
⎢

⎤

⎦
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⎥

⎧
⎪
⎨
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⎩

⎫
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⎪
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(2 sec u − u  − 2)2 wL u u

u
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2

8
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1
2

1
2
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−⎛

⎝
⎜

⎞

⎠
⎟

⎡

⎣
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⎤

⎦
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⎥
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Notes: 1. For all cases: P
EI

L
eL = π 2

2
, u

P

P
r

eL

= π α
2

 2. For case 4: first-order: M
wL

2

2

24
= , second-order: M

wL u

u
2

2

224

6
=

−( )⎡

⎣
⎢

⎤

⎦
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sin u
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Case 1: Moderately Tapered Doubly Symmetric Member Subject to Sidesway (see Figure C-1)

Geometric Properties:
Bottom web height = 9.5 in.
Top web height = 24.5 in.
Flanges = PL ¼ × 6
Web thickness = 0.125 in.
L = 16.36 ft (196.3 in.)
H/αPr = 0.01
Am = 5.125 in.2

Im = 274 in.4

Displacement boundary conditions: Simply supported base,  rotation fully restrained at the top

First-Order Analysis Stiffness Coeffi cients

Units: kips, inches

k

EA

L

EA

L
EI

L

EI

L

EI

m m

m m m
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. . .
LL

EI

L
EI

L

EI

L

EI

L

EI

L

m

m m m m

3 2

2 2

7 264

0 3 685 2 029 0 3 685 1 656

0 9

.

. . . .

.

−

− 889 0 0 0 989 0 0

0 10 950 3 685 0 10 950 7
3 2 3

EA

L

EA

L
EI

L

EI

L

EI

L

m m

m m m

.

. . .− − − ..

. . . .

264

0 7 264 1 656 0 7 264 5 607

2

2 2

EI

L
EI

L

EI

L

EI

L

EI

L

m

m m m m−

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢
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⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

Large end: AL /Am = 1.183 and IL /Im = 2.233
Small end: As /Am = 0.817 and Is /Im = 0.292

In-Plane Elastic Flexural Buckling Strength
PeL = 1,757 kips
Pcr = 649 kips
Pyo = 230 kips

First-order and second-order deflections and bending moments 
at various axial load levels are shown in Table C-2.1.

Table C-2.1. Sidesway Deflection and Moment

P
P

r

cr

α P
P

r

eL

α P
P

r

yo

α
Δ, in. M, kip-ft

0.00 (first-order) 0.000 0.000 0.223H 16.36H

0.10 0.037 0.282 0.246H 17.70H

0.20 0.074 0.564 0.277H 19.34H

0.30 0.111 0.847 0.316H 21.46H

0.40 0.148 1.129 0.367H 24.27H

Fig. C-1. Moderately tapered doubly 
symmetric member subject to sidesway.
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Case 2: Heavily Tapered Singly Symmetric Member Subject to Sidesway (see Figure C-2)

Case 2 is similar to Case 1 except that it has a relatively large taper angle and a singly symmetric cross section. The centroidal 
axis of this member is not straight due to the singly symmetric cross section.

In practice, it can be difficult to account for the minor effect of the curvature of the centroidal axis. Therefore, two solutions are 
provided:

1. An exact solution accounting for the curved centroidal axis
2. An approximate solution based on a straight reference axis 

with the moment of inertia varying along the length 
identically to that of the curved centroidal axis case

Geometric Properties: 
Bottom web height = 9.125 in.
Top web height = 39.875 in.
Left flange = PL ½ × 6 
Right flange = PL a × 6 
Web thickness = 0.21875 in.
L = 15.1 ft (181.2 in.)
H/αPr = 0.01
Am = 10.609 in.2

Im = 1,076 in.4

Displacement boundary conditions: simply supported base, 
rotation fully restrained at the top

Table C-2.2. Sidesway Deflection and Moment

P
P

r

cr

α P
P

r

eL

α P
P

r

yo

α
Δ, in. M, kip-ft

0.00 (first-order) 0.000 0.000 0.0412H 15.10H

0.04 0.018 0.301 0.0395H 15.49H

0.08 0.036 0.601 0.0410H 15.91H

0.12 0.054 0.902 0.0428H 16.36H

0.16 0.072 1.203 0.0447H 16.86H

Fig. C-2. Heavily tapered singly 
symmetric member subject to sidesway.

Table C-2.3. Sidesway Deflection and Moment

P
P

r

cr

α P
P

r

eL

α P
P

r

yo

α
Δ, in. M, kip-ft

0.00 (first-order) 0.000 0.000 0.0412H 15.10H

0.04 0.018 0.304 0.0428H 15.52H

0.08 0.036 0.607 0.0446H 15.98H

0.12 0.054 0.911 0.0465H 16.48H

0.16 0.072 1.214 0.0486H 17.03H
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1.  Exact solution accounting for the curved centroidal axis
First-Order Analysis Stiffness Coefficients

Units: kips, inches
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Large end: AL /Am = 1.317 and IL /Im = 3.041
Small end: As /Am = 0.684 and Is /Im = 0.123

 In-Plane Elastic Flexural Buckling Strength

PeL = 6,683 kips
Pcr = 2,996 kips
Pyo = 399 kips

 First-order and second-order deflections and bending moments at various axial load levels are shown in Table C-2.2.

2.  Approximate solution based on a straight reference axis 

First-Order Analysis Stiffness Coefficients

Units: kips, inches
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Large end: AL /Am = 1.317 and IL /Im = 3.038
Small end: As /Am = 0.683 and Is /Im = 0.123
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 In-Plane Elastic Flexural Buckling Strength

 PeL = 6,683 kips (equal to the value from case 1 to within four significant digits)
 Pcr = 3,019 kips (1.008 of the value of Pcr for case 1)
 Pyo = 398 kips (0.997 of the value of Pyo for case 1)

 First-order and second-order deflections and bending moments at various axial load levels are shown in Table C-2.3.

The second-order displacements, Δ, and maximum moments at the top of the column, M, are slightly smaller in solution 1 than 
for the model with a straight reference axis in solution 2. This is due to the physical curvature of the centroidal axis modeled in 
solution 1 (the initial centroidal axis is curved to the left) and the influence of the axial force αPr acting through the initial cur-
vature of the physical centroidal axis. However, the solutions for the first-order stiffness are practically identical. There is some 
coupling between the axial and bending behavior in the first-order analysis solution of solution 1. This is indicated by nonzero 
stiffness coefficients in rows and columns 1 and 4 of the stiffness matrix in solution 1 where the stiffness coefficients are zero in 
the above solution. The solutions for PeL are identical in both cases to within four significant digits and the solutions for Pcr are 
identical to within 0.8%.

Case 3: Tapered Doubly Symmetric Member Subject to Transverse Loading (see Figure C-3)

Case 3 is a propped cantilever subject to a uniformly distributed transverse load. The geometry of this case is similar to the 
geometry of the rafter of the Example 5.3 frame in Chapter 4 of Lee et al. (1981). The transverse load is applied normal to the 
centroidal axis of the member.

Geometric Properties:
Left end web height = 8.5 in.
Right end web height = 38.5 in.
Flanges = PL 4 × 6
Web thickness = 0.1875 in.
L = 40.0 ft (480.0 in.)
wL/αPr = 0.1
Am = 7.406 in.2

Im = 625.8 in.4

Displacement boundary conditions: fully fixed at left end, simply supported at right end

First-Order Analysis Stiffness Coeffi cients

Units: kips, inches
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Large end: AL /Am = 1.380 and IL /Im = 3.224
Small end: As /Am = 0.620 and Is /Im = 0.107
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Fig. C-3. Propped cantilever.

Table C-2.4. Sidesway Deflection and Moment

P
P

r

cr

α P
P

r

eL

α P
P

r

yo

α
Δmid, in. Mneg, kip-ft fneg, ksi Mpos, kip-ft* fpos, ksi**

0.00 (first-order) 0.000 0.000 0.0273wL 7.501wL 0.870wL 1.950wL 0.726wL

0.10 0.197 0.427 0.0297wL 7.939wL 0.921wL 2.153wL 0.815wL

0.20 0.394 0.853 0.0327wL 8.475wL 0.983wL 2.407wL 0.928wL

0.30 0.591 1.280 0.0364wL 9.145wL 1.061wL 2.728wL 1.072wL

* The location of the maximum positive moment is 28 ft from the left-hand side (within two significant digits) in all cases.
** The location of the maximum flexural stress within the span is 32 ft from the left-hand side (within two significant digits) in all cases.

In-Plane Elastic Flexural Buckling Strength

PeL = 547 kips
Pcr = 1,078 kips
Pyo = 253 kips

First-order and second-order deflections and bending moments at various axial load levels are shown in Table C-2.4.

Moment and Flange Stress Diagrams

1) αPr/ Pcr = 0.00
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 C.3 METHOD OF SUCCESSIVE APPROXIMATIONS

 C.3.1 γγeL and PeL of Simple Web-Tapered Column

The following spreadsheet-style calculations illustrate the steps in the solution for γeL and PeL for the simple web-tapered column 
shown in Figure C-5 using the method of successive approximations. The first two cycles are shown along with the final iteration 
in Tables C-3a, b and c. The third through seventh iterations are not shown.

Geometric Properties:
Left flange = PL ¼ × 6
Right flange = PL ¼ × 6
Web thickness = 0.125 in.
Bottom web height = 12.0 in.
Top web height = 24.0 in.
Member length = 144 in.

Nodes are evenly distributed along the length of the member in columns 1 and 2 of Table C-3a. Nodes between the two end nodes 
each have two rows to allow a change in member properties and/or loading at each side of the node. In this example, there are no 
such changes. Depths and moments of inertias are calculated at each node in columns 3 and 4.

The assumed loading given in column 5 is a constant axial load of 7.50 kips at each node, a value taken from Example 5.2. The 
assumed deflection for the first iteration in column 6 is linearly tapered from zero at the ends to 10 in. at the center of the column. 
Although this is a poor estimate of the final deflected shape, it nonetheless results in convergence of the solution to four decimal 
places in eight iterations. A better initial estimate would reduce the number of iterations required to achieve the same accuracy.

The bending moment at each point is the axial load at that point, P, multiplied by the assumed deflection, δ. The curvature at that point is 
then Pδ/EI, tabulated in column 7. This curvature is then integrated twice using the conjugate beam method to calculate the deflections. In 

(a) P P/r cr = 0

(b) P P/r cr = 0.300

Units: w (kips/ft), L (ft)

Fig. C-4. Moment diagrams for propped cantilever.

169-192_DG25_Appendix_A-C.indd   184 6/21/11   5:13 PM



AISC DESIGN GUIDE 25 / FRAME DESIGN USING WEB-TAPERED MEMBERS / 185

Table C-3a. Simple Tapered Column—First Iteration

1 2 3 4 5 6 7 8 9 10 11 12 13

Node

x
from 

top

in.

Depth

in.

Moment 

of Inertia

in.4

P
kips

Assumed 

δδ
in.

Pδ/EI
rad/in.

Conc. 

Curvature 

M′/EI
rad

(M′/EI) *x
in.-rad

Average 

θ
rad

δ
in.

γ
y1/y2

Next δ 

Estimate

in.

0 0.0 24.50 585.1 7.50 0.000 0.00000000 – –
0.000280

0.00000 – 0.000

1L
14.4

23.30 522.0 7.50
2.000

0.00000099
0.0000146 0.000210 0.00403 496.4 2.668

1R 23.30 522.0 7.50 0.00000099
0.000265

2L
28.8

22.10 463.1 7.50
4.000

0.00000223
0.0000326 0.000938 0.00785 509.6 5.198

2R 22.10 463.1 7.50 0.00000223
0.000233

3L
43.2

20.90 408.3 7.50
6.000

0.00000380
0.0000552 0.002386 0.01120 535.8 7.417

3R 20.90 408.3 7.50 0.00000380
0.000177

4L
57.6

19.70 357.5 7.50
8.000

0.00000579
0.0000840 0.004839 0.01375 581.6 9.109

4R 19.70 357.5 7.50 0.00000579
0.000093

5L
72.0

18.50 310.6 7.50
10.000

0.00000833
0.0001162 0.008363 0.01510 662.3 10.000

5R 18.50 310.6 7.50 0.00000833
-0.000023

6L
86.4

17.30 267.4 7.50
8.000

0.00000774
0.0001110 0.009590 0.01477 541.5 9.783

6R 17.30 267.4 7.50 0.00000774
-0.000134

7L
100.8

16.10 228.0 7.50
6.000

0.00000681
0.0000974 0.009820 0.01285 467.0 8.508

7R 16.10 228.0 7.50 0.00000681
-0.000231

8L
115.2

14.90 192.1 7.50
4.000

0.00000539
0.0000767 0.008834 0.00952 420.2 6.304

8R 14.90 192.1 7.50 0.00000539
-0.000308

9L
129.6

13.70 159.7 7.50
2.000

0.00000324
0.0000453 0.005876 0.00509 393.3 3.368

9R 13.70 159.7 7.50 0.00000324
-0.000353

10 144.0 12.50 130.6 7.50 0.000 0.00000000 – – 0.00000 – 0.000

Σ 0.000633 0.05086
θ0 – 1  = 0.000633 – 0.05086/144 in. 

= 0.000280 rad

this example, the M/EI curve in column 7 is reduced to a series of equivalent concentrated M/EI values in column 8 using the parabolic 
equations presented in Table A-2 of Section A.2 to simplify the subsequent beam span analysis. The reactions from the concentrated 
M/EI values in column 8 are then calculated using statics from the information in column 9. The top reaction is used as the aver-
age rotation between nodes 0 and 1 in column 10 and the rotations of each subsequent segment are taken as the previous rotation 
less the concentrated curvature value from column 8.

The average rotations in column 10 are then integrated to produce the deflections in column 11. The ratio of the assumed de-
flections to the calculated deflections, γ, is given in column 12. A new set of deflections estimates, normalized to a center deflec-
tion of 10.0 in. is then calculated in column 13 by multiplying each of the calculated deflections from column 11 by the value of 
γ at the center. This new set of deflection estimates then replaces those in column 6 for the next iteration. At convergence, the 
value of γ in column 12 will be essentially the same for all nodes, and the deflections estimated for the next cycle in column 13 
will essentially equal those that were used in column 6.

If the assumed loading in column 5 is identical to Pr for the load combination under consideration, then γeL is equal to the final 
γ from column 12, otherwise

γ γeL
r

P

P
= column12

column 5
. In either case, P PeL = column5 column12γ .

For this example, converged values of γeL = 531 and PeL = 7.50 kips (531) = 3,980 kips are obtained after eight iterations.

From an eigenvalue buckling analysis using GT-Sabre (Chang, 2006), PeL was calculated to be 3,878 kips, a difference of 2.6%.
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Table C-3b. Simple Tapered Column—Second Iteration

1 2 3 4 5 6 7 8 9 10 11 12 13

Node

x
from 

top

in.

Depth

in.

Moment 

of Inertia

in.4

P
kips

Assumed 

δδ
in.

Pδ/EI
rad/in.

Conc. 

Curvature 

M′/EI
rad

(M′/EI) *x
in.-rad

Average 

θ
rad

δ
in.

γ
y1/y2

Next δ 

Estimate

in.

0 0.0 24.50 585.1 7.50 0.000 0.00000000 – –
0.000342

0.00000 – 0.000

1L
14.4

23.30 522.0 7.50
2.668

0.00000132
0.0000193 0.000279 0.00492 542.3 2.681

1R 23.30 522.0 7.50 0.00000132
0.000322

2L
28.8

22.10 463.1 7.50
5.198

0.00000290
0.0000421 0.001211 0.00956 543.5 5.209

2R 22.10 463.1 7.50 0.00000290
0.000280

3L
43.2

20.90 408.3 7.50
7.417

0.00000470
0.0000678 0.002928 0.01360 545.4 7.408

3R 20.90 408.3 7.50 0.00000470
0.000213

4L
57.6

19.70 357.5 7.50
9.109

0.00000659
0.0000947 0.005455 0.01666 546.7 9.076

4R 19.70 357.5 7.50 0.00000659
0.000118

5L
72.0

18.50 310.6 7.50
10.000

0.00000833
0.0001192 0.008582 0.01836 544.7 10.000

5R 18.50 310.6 7.50 0.00000833
-0.000001

6L
86.4

17.30 267.4 7.50
9.783

0.00000946
0.0001351 0.011673 0.01834 533.5 9.989

6R 17.30 267.4 7.50 0.00000946
-0.000136

7L
100.8

16.10 228.0 7.50
8.508

0.00000965
0.0001374 0.013846 0.01637 519.6 8.919

7R 16.10 228.0 7.50 0.00000965
-0.000274

8L
115.2

14.90 192.1 7.50
6.304

0.00000849
0.0001200 0.013821 0.01243 507.1 6.771

8R 14.90 192.1 7.50 0.00000849
-0.000394

9L
129.6

13.70 159.7 7.50
3.368

0.00000546
0.0000757 0.009805 0.00676 498.2 3.682

9R 13.70 159.7 7.50 0.00000546
-0.000469

10 144.0 12.50 130.6 7.50 0.000 0.00000000 – – 0.00000 – 0.000

Σ 0.000811 0.06760
θ0 – 1  = 0.000811 – 0.06760/144 in. 

= 0.000342 rad
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Table C-3c. Simple Tapered Column—Final Iteration

1 2 3 4 5 6 7 8 9 10 11 12 13

Node

x
from 

top

in.

Depth

in.

Moment 

of Inertia

in.4

P
kips

Assumed 

δδ
in.

Pδ/EI
rad/in.

Conc. 

Curvature 

M′/EI
rad

(M′/EI) *x
in.-rad

Average 

θ
rad

δ
in.

γ
y1/y2

Next δ 

Estimate

in.

0 0.0 24.50 585.1 7.50 0.000 0.00000000 – –
0.000348

0.00000 – 0.000
1L

14.4
23.30 522.0 7.50

2.659
0.00000132

0.0000193 0.000278 0.00501 530.5 2.659
1R 23.30 522.0 7.50 0.00000132

0.000329
2L

28.8
22.10 463.1 7.50

5.170
0.00000289

0.0000418 0.001205 0.00975 530.5 5.170
2R 22.10 463.1 7.50 0.00000289

0.000287
3L

43.2
20.90 408.3 7.50

7.362
0.00000466

0.0000673 0.002906 0.01388 530.5 7.362
3R 20.90 408.3 7.50 0.00000466

0.000220
4L

57.6
19.70 357.5 7.50

9.041
0.00000654

0.0000941 0.005419 0.01704 530.5 9.041
4R 19.70 357.5 7.50 0.00000654

0.000126
5L

72.0
18.50 310.6 7.50

10.000
0.00000833

0.0001194 0.008600 0.01885 530.5 10.000
5R 18.50 310.6 7.50 0.00000833

0.000006
6L

86.4
17.30 267.4 7.50

10.047
0.00000972

0.0001389 0.011999 0.01894 530.5 10.047
6R 17.30 267.4 7.50 0.00000972

-0.000133
7L

100.8
16.10 228.0 7.50

9.033
0.00001025

0.0001458 0.014695 0.01703 530.5 9.033
7R 16.10 228.0 7.50 0.00001025

-0.000279
8L

115.2
14.90 192.1 7.50

6.906
0.00000930

0.0001312 0.015115 0.01302 530.5 6.906
8R 14.90 192.1 7.50 0.00000930

-0.000410
9L

129.6
13.70 159.7 7.50

3.776
0.00000612

0.0000846 0.010958 0.00712 530.5 3.776
9R 13.70 159.7 7.50 0.00000612

-0.000494
10 144.0 12.50 130.6 7.50 0.000 0.00000000 – – 0.00000 – 0.000

Σ 0.000842 0.07118
θ0 – 1  = 0.000842 – 0.07118/144 in. 

= 0.000348 rad

 C.3.2 γeL of Stepped Web-Tapered Column

The following spreadsheet-style calculations illustrate the solution of PeL for the fairly complex web tapered column, shown in 
Figure C-6, using the method of successive approximations. The initial two cycles are presented in Tables C-3d and C-3e, along 
with the final solution in Table C-3f. The third through eighth iterations are not shown. The procedure is identical to that just 
presented for the simple column, but the example illustrates the handling of abrupt changes in loading and geometry.

The upper shaft is divided into three elements of 32 in. and the lower shaft is divided into seven elements of 30 in. to create 
approximately equal length segments in the upper and lower shafts. Note that in the vicinity of node 3, where the step occurs, it 
is necessary to use the versions of the equations from Table A-2 for unequal element lengths. Also note that the eccentricities of 
the geometry and loading are ignored in the analysis.

The resulting γ in column 12 of Table C-3f for the final (ninth) iteration indicates that the in-plane elastic flexural buckling load 
for this column is 62.8 times the loads used in the analysis. This compares with a γ of 64.2 calculated from an elastic eigenvalue 
buckling analysis with concentric assumptions conducted using GT-Sabre (Chang, 2006), a difference of 2.2%.

Geometric Properties:
Top web height = 12.0 in.
Step web height = 33.0 in.
Bottom web height = 12.0 in.
Left flange = PL 2 × 8
Right flange below step = PL w × 8
Right flange above step = PL s × 8
Web thickness above step = 0.188 in.
Web thickness below step = 0.250 in.
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Fig. C-6. Stepped column.Fig. C-5. Example column.

169-192_DG25_Appendix_A-C.indd   188 6/21/11   5:13 PM



AISC DESIGN GUIDE 25 / FRAME DESIGN USING WEB-TAPERED MEMBERS / 189

Table C-3d. Complex Tapered Column—First Iteration

1 2 3 4 5 6 7 8 9 10 11 12 13

Node

x
from 

top

in.

Depth

in.

Moment 

of 

Inertia

in.4

P
kips

Assumed 

δδ
in.

Pδ/EI
rad/in.

Conc. 

Curvature 

M′/EI
rad

(M′/EI) *x
in.-rad

Average

θ
rad

δ
in.

γ
y1/y2

Next δ 

Estimate

in.

0 0.0 13.13 379.0 30.00 0.000 0.00000000 – –
0.001262

0.0000 – 0.000

1L
32.0

13.13 379.0 30.00
2.000

0.00000546
0.000175 0.0056 0.0404 49.520 3.429

1R 13.13 379.0 30.00 0.00000546
0.001087

2L
64.0

13.13 379.0 30.00
4.000

0.00001092
0.000349 0.0224 0.0752 53.201 6.384

2R 13.13 379.0 30.00 0.00001092
0.000738

3L
96.0

13.13 379.0 30.00
6.000

0.00001638
0.000312 0.0299 0.0988 60.726 8.390

3R 34.25 3515.6 75.00 0.00000441
0.000426

4L
126.0

31.25 2855.7 75.00
8.000

0.00000725
0.000221 0.0278 0.1116 71.687 9.476

4R 31.25 2855.7 75.00 0.00000725
0.000206

5L
156.0

28.25 2274.1 75.00
10.000

0.00001137
0.000332 0.0517 0.1178 84.911 10.000

5R 28.25 2274.1 75.00 0.00001137
-0.000126

6L
186.0

25.25 1767.6 75.00
8.000

0.00001170
0.000350 0.0651 0.1140 70.179 9.679

6R 25.25 1767.6 75.00 0.00001170
-0.000476

7L
216.0

22.25 1332.7 75.00
6.000

0.00001164
0.000347 0.0750 0.0997 60.173 8.467

7R 22.25 1332.7 75.00 0.00001164
-0.000823

8L
246.0

19.25 965.9 75.00
4.000

0.00001071
0.000316 0.0778 0.0750 53.321 6.370

8R 19.25 965.9 75.00 0.00001071
-0.001140

9L
276.0

16.25 663.8 75.00
2.000

0.00000779
0.000222 0.0612 0.0408 48.981 3.467

9R 16.25 663.8 75.00 0.00000779
-0.001361

10 306.0 13.25 423.0 75.00 0.000 0.00000000 – – 0.0000 – 0.000

Σ 0.00262 0.4165
θ0 – 1  = 0.00262 – 0.4165/306 in. 

= 0.001262 rad
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Table C-3e. Complex Tapered Column—Second Iteration

1 2 3 4 5 6 7 8 9 10 11 12 13

Node

x
from 

top

in.

Depth

in.

Moment 

of 

Inertia

in.4

P
kips

Assumed 

δδ
in.

Pδ/EI
rad/in.

Conc. 

Curvature 

M′/EI
rad

(M′/EI) *x
in.-rad

Average 

θ
rad

δ
in.

γ
y1/y2

Next δ 

Estimate

in.

0 0.0 13.13 379.0 30.00 0.000 0.00000000 – –
0.001771

0.0000 – 0.000

1L
32.0

13.13 379.0 30.00
3.429

0.00000936
0.000296 0.0095 0.0567 60.528 3.670

1R 13.13 379.0 30.00 0.00000936
0.001474

2L
64.0

13.13 379.0 30.00
6.384

0.00001743
0.000551 0.0352 0.1038 61.479 6.726

2R 13.13 379.0 30.00 0.00001743
0.000924

3L
96.0

13.13 379.0 30.00
8.390

0.00002290
0.000445 0.0427 0.1334 62.889 8.641

3R 34.25 3515.6 75.00 0.00000617
0.000479

4L
126.0

31.25 2855.7 75.00
9.476

0.00000858
0.000258 0.0326 0.1478 64.124 9.571

4R 31.25 2855.7 75.00 0.00000858
0.000221

5L
156.0

28.25 2274.1 75.00
10.000

0.00001137
0.000341 0.0532 0.1544 64.771 10.000

5R 28.25 2274.1 75.00 0.00001137
-0.000121

6L
186.0

25.25 1767.6 75.00
9.679

0.00001416
0.000424 0.0788 0.1508 64.198 9.766

6R 25.25 1767.6 75.00 0.00001416
-0.000544

7L
216.0

22.25 1332.7 75.00
8.467

0.00001643
0.000489 0.1056 0.1344 62.974 8.708

7R 22.25 1332.7 75.00 0.00001643
-0.001033

8L
246.0

19.25 965.9 75.00
6.370

0.00001706
0.000501 0.1233 0.1035 61.568 6.701

8R 19.25 965.9 75.00 0.00001706
-0.001534

9L
276.0

16.25 663.8 75.00
3.467

0.00001351
0.000380 0.1050 0.0574 60.366 3.720

9R 16.25 663.8 75.00 0.00001351
-0.001915

10 306.0 13.25 423.0 75.00 0.000 0.00000000 – – 0.0000 – 0.000

Σ 0.00369 0.5858
θ0 – 1  = 0.00369 – 0.5858/306 in. 

= 0.001776 rad
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Table C-3f. Complex Tapered Column—Final Iteration

1 2 3 4 5 6 7 8 9 10 11 12 13

Node

x
from 

top

in.

Depth

in.

Moment 

of Inertia

in.4

P
kips

Assumed 

δδ
in.

Pδ/EI
rad/in.

Conc. 

Curvature 

M′/EI
rad

(M′/EI) *x
in.-rad

Average 

θ
rad

δ
in.

γ
y1/y2

Next δ 

Estimate

in.

0 0.0 13.13 379.0 30.00 0.000 0.00000000 – –
0.001847

0.0000 – 0.000

1L
32.0

13.13 379.0 30.00
3.712

0.00001013
0.000320 0.0102 0.0591 62.795 3.712

1R 13.13 379.0 30.00 0.00001013
0.001528

2L
64.0

13.13 379.0 30.00
6.782

0.00001851
0.000584 0.0374 0.1080 62.795 6.782

2R 13.13 379.0 30.00 0.00001851
0.000944

3L
96.0

13.13 379.0 30.00
8.678

0.00002369
0.000462 0.0444 0.1382 62.795 8.678

3R 34.25 3515.6 75.00 0.00000638
0.000481

4L
126.0

31.25 2855.7 75.00
9.585

0.00000868
0.000261 0.0329 0.1526 62.795 9.585

4R 31.25 2855.7 75.00 0.00000868
0.000220

5L
156.0

28.25 2274.1 75.00
10.000

0.00001137
0.000342 0.0533 0.1592 62.795 10.000

5R 28.25 2274.1 75.00 0.00001137
-0.000122

6L
186.0

25.25 1767.6 75.00
9.771

0.00001430
0.000428 0.0796 0.1556 62.795 9.771

6R 25.25 1767.6 75.00 0.00001430
-0.000550

7L
216.0

22.25 1332.7 75.00
8.735

0.00001695
0.000505 0.1090 0.1391 62.795 8.735

7R 22.25 1332.7 75.00 0.00001695
-0.001055

8L
246.0

19.25 965.9 75.00
6.748

0.00001807
0.000531 0.1306 0.1075 62.795 6.748

8R 19.25 965.9 75.00 0.00001807
-0.001585

9L
276.0

16.25 663.8 75.00
3.762

0.00001466
0.000412 0.1136 0.0599 62.795 3.762

9R 16.25 663.8 75.00 0.00001466
-0.001997

10 306.0 13.25 423.0 75.00 0.000 0.00000000 – – 0.0000 – 0.000

Σ 0.00384 0.6110
θ0 – 1  = 0.00384 – 0.6110/306 in. 

= 0.001847 rad
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 SYMBOLS

A Column cross-sectional area, in.2

Ae Effective net area, in.2

Aeff Summation of  the effective areas of the cross section 
based on the reduced effective width, be, in.2

Afg Gross tension fl ange area, in.2

Aflange Area of fl ange, in.2

Afn Net tension fl ange area, in.2

Ag Gross area of member, in.2

Aw Area of web, in.2

B1 Amplifi er for nonsway moments

B2 Amplifi er for sway moments

Cb Lateral-torsional buckling modifi cation factor for 
nonuniform member stress

Cd Seismic defl ection amplifi cation factor

Cm Coeffi cient to account for nonuniform moment in in-
teraction equations

Cw Warping constant, in.6

Cv Web shear coeffi cient

E Modulus of elasticity = 29,000 ksi

Fca Available compressive stress, ksi

Fcbx Available fl exural stress for bending about the x-axis, 
ksi

Fcby Available fl exural stress for bending about the y-axis, 
ksi

Fcr Critical axial buckling stress, ksi

Fe Elastic critical buckling stress, ksi

Fe′ Euler stress for a prismatic member divided by factor 
of safety, ksi

FeLTB Elastic critical lateral-torsional buckling stress, ksi

Fey Elastic fl exural buckling stress about the minor axis, 
ksi

Fez Elastic torsional buckling stress, ksi

FL Assumed fl exural extreme fi ber stress at transition 
between elastic and inelastic regions, ksi

Fn1 Nominal axial buckling stress, not including the ef-
fects of slender elements, ksi

Fr Generalized required axial stress, ksi

Fu Specifi ed minimum tensile strength, ksi

Fy Specifi ed minimum yield strength, ksi

Fyf Specifi ed minimum yield strength of fl ange, ksi

Fyw Specifi ed minimum yield strength of web, ksi

G Shear modulus of elasticity = 11,200 ksi

H Total lateral frame load

H Flexural constant

I Moment of inertia, in.4

I′ Moment of inertia of equivalent prismatic column of 
the same length, in.4

Iyc Moment of inertia about y-axis referred to the com-
pression fl ange, in.4

Iy1 Moment of inertia about y-axis of the smaller fl ange, 
in.4

Iy2 Moment of inertia about y-axis of the larger fl ange, 
in.4

IxLarge Moment of inertia about x-axis of the deeper end of 
the unbraced length, in.4

IxSmall Moment of inertia about x-axis of the shallower end 
of the unbraced length, in.4

J St. Venant’s torsional constant, in.4

K Effective length factor

Kγ g Effective length factor accounting for both end condi-
tions and web taper

L Member length, in.

Lb Length between points that are braced against lat-
eral displacement of compression fl anges or braced 
against twist of the cross section, in.

Lchord Span length along the rafter chord between the cross-
section centroids at the tops of the columns, in.

Los  On-slope length of rafter, in. = length of rafter be-
tween columns measured along the rafter top fl ange 

Lz Torsional unbraced length, in.

M1st  Bending moment from fi rst-order analysis, kip-in.

M2nd  Bending moment from second-order analysis, kip-in.

Ma ASD required fl exural strength, kip-in.
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Me.LTB Elastic lateral-torsional buckling strength, kip-in.

Mn Nominal fl exural strength, kip-in.

Mcx Available fl exural strength about x-axis (ASD or 
LRFD), kip-in.

Mcy Available fl exural strength about y-axis (ASD or 
LRFD), kip-in.

Mp Plastic bending moment, kip-in.

Mr Required fl exural strength (ASD or LRFD), kip-in.

Mrx Required fl exural strength about x-axis (ASD or 
LRFD), kip-in.

Mry Required fl exural strength about y-axis (ASD or 
LRFD), kip-in.

Mu LRFD required fl exural strength, kip-in.

Myc Yield moment with respect to the compression fl ange, 
kip-in.

Myt Yield moment with respect to the tension fl ange, 
kip-in.

P Vertical frame load, kips.

P-Δ Additional moment (couple) due to axial force acting 
through the relative transverse displacement of the 
member (or member segment) ends

P-δ Additional moment (couple) due to axial force acting 
through the transverse displacement of the cross-
section centroid relative to a chord between the member 
(or member segment) ends

Pa ASD required axial strength, kips

Pc Available axial strength (ASD or LRFD), kips

Pcr Elastic fl exural buckling load of a member segment of 
length ℓ based on actual end conditions

Pcr Elastic fl exural buckling load of a member segment 
of length ℓ based on actual end conditions, calculated 
using the reduced stiffness specifi ed by the direct 
analysis method (DM)

Pe Elastic buckling load, kips

PeCAT  Elastic constrained-axis torsional buckling load, kips

Peℓ Elastic fl exural buckling load of a member segment of 
length ℓ based on idealized pinned-pinned end condi-
tions, evaluated in the plane of bending, kips

Pe� Flexural buckling load in the plane of bending for 
a member segment of length ℓ, calculated using the 
reduced stiffness specifi ed by the direct analysis 
method (DM) and using idealized pinned-pinned end 
conditions, kips

PeL Elastic fl exural buckling load of a member of length 
L based on idealized pinned-pinned end conditions, 
evaluated in the plane of bending, kips

PeL Flexural buckling load in the plane of bending for 
a member of length L, calculated using the reduced 
stiffness specifi ed by the direct analysis method (DM) 
and using idealized pinned-pinned end conditions, 
kips

Pey Elastic out-of-plane fl exural buckling load, kips

Pex Elastic in-plane fl exural buckling load, kips

Pez Elastic torsional buckling load, kips

Pn Nominal axial strength, kips

Pni Nominal axial in-plane compressive strength, kips

Pr Required axial strength (ASD or LRFD), kips

Pu LRFD required axial strength, kips

Px Gravity load, kips

Py Column yield strength, kips

Pyo Column yield strength at small end, kips

Q Static moment of area between extreme fl ange fi ber 
and inside fl ange fi ber, taken about the neutral axis

Q Full reduction factor for slender elements

Qa Reduction factor for slender stiffened elements

Qs Reduction factor for slender unstiffened elements

Ra ASD required strength (force or moment), kips or 
kip-in.

Ru LRFD required strength (force or moment), kips or 
kip-in.

Rr Generalized required strength (ASD or LRFD, force 
or moment), kips or kip-in.

Rn Nominal strength (force or moment), kips or kip-in.

Rpc Web plastifi cation factor

Rpg Web buckling factor

S Section modulus, in.3

Sxc Elastic section modulus referenced to compression 
fl ange, in.3

Sxt Elastic section modulus referenced to tension fl ange, 
in.3

Va ASD required shear strength, kips

Vn Nominal shear strength, kips

Vr Required shear strength, kips
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Vrw Required weld shear strength, kips

Vx Total lateral load at a story level, kips

Vu LRFD required design shear strength, kips

Yi Vertical load introduced at level i, kips

Yt Tension fl ange rupture factor

Zx Plastic section modulus about the x-axis, in.3

a Clear distance between transverse stiffeners, in.

ac Distance from center of girt or purlin to centroid of 
column, in.

as Distance from center of girt or purlin to shear center 
of column, in.

aw Ratio of two times the web area in compression due 
to strong axis fl exure alone to the area of the compres-
sion fl ange

be Reduced effective width, in.

bf Flange width, in.

bfc Compression fl ange width, in.

d Full nominal depth of section, in.

dh Bolt hole diameter, in.

h Web height, in.

hc Twice the distance from the cross-section centroid to 
the inside face of the compression fl ange, in.

ho Distance between fl ange centroids, in.

hp Twice the distance from the plastic neutral axis to the 
inside face of the compression fl ange, in.

f Stress at which effective width of stiffened element is 
calculated, ksi

f0 Flexural stress at opposite end of unbraced length 
from f2, ksi

f1 Stress computed from f0 and f2, ksi

f2 Absolute value of largest compression stress at either 
end of an unbraced length, ksi

fa Computed axial stress, ksi

fmid Flexural stress at middle of unbraced length, ksi

fr Generalized required stress, ksi

fra Required axial stress, ksi

frbx Required fl exural stress for bending about the strong 
axis, ksi

frby Required fl exural stress for bending about the weak 
axis, ksi

frmax Maximum required stress, ksi

kc Coeffi cient for slender unstiffened elements

kv Web plate buckling coeffi cient

l Length of member segment, in.

r Radius of gyration, in.

rt Radius of gyration of the fl ange in fl exural compres-
sion plus one third of the web area in compression 
due to the application of major axis bending moment 
alone, in.

tf Flange thickness, in.

tfc Compression fl ange thickness, in.

tft Tension fl ange thickness, in.

tw Web thickness, in.

x Distance from small end of member where equivalent 
moment of inertia is calculated, in.

yo Distance from shear center to centroid, in.

y1 Assumed defl ection, in.

y2 Calculated defl ection, in.

y Distance between extreme fi ber and centroid, in.

α Factor used to convert the loads from the strength 
design load level to an ultimate strength load level 
(1.6 for ASD and 1.0 for LRFD)

γ Ratio of the assumed defl ection to the calculated 
defl ection

Δ Interstory frame drift due to lateral forces, in. 

ΔH Average fi rst-order interstory frame drift due to lat-
eral forces, in.

Δ1st Story drift from fi rst-order analysis, in.

Δ2nd  Story drift from second-order analysis, in.

δ Member transverse displacement between end points

δ1st First order member transverse displacement between 
end points

δ2nd Total second order member transverse displacement 
between end points, including fi rst order displacement

γe Ratio of elastic axial buckling force (or stress) to re-
quired axial force (or stress)
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γeL Ratio of elastic axial buckling force (or stress) to 
required axial force (or stress) of a member based 
on idealized pinned-pinned end conditions (K = 1), 
evaluated in the plane of bending

γeL Ratio of elastic axial buckling force (or stress) to 
required axial force (or stress) of a member based 
on idealized pinned-pinned end conditions (K = 1), 
evaluated in the plane of bending, calculated using 
the reduced stiffness specifi ed by the direct analysis 
method (DM)

γeLTB Ratio of elastic lateral-torsional buckling moment (or 
stress) to required moment (or stress) of a member

γn1 Ratio of axial buckling (or stress) to required axial 
force (or stress) of a member, without consideration 
of slender elements

γe.rafter Elastic buckling multiplier for in-plane buckling of a 
rafter analyzed within the frame

γe.story Elastic buckling multiplier for in-plane buckling of 
the entire frame story

λ Slenderness ratio

λr Limiting slenderness ratio between elastic and inelas-
tic buckling

λp Limiting slenderness ratio between inelastic buckling 
and plastic yielding

ϕ Resistance factor (LRFD)

Ω Safety factor (ASD)

τb Stiffness reduction factor for use in direct analysis 
method (DM)
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 GLOSSARY

Allowable strength. Nominal strength divided by the safety 
factor, Rn/Ω.

Allowable stress design. Method of proportioning structural 
components such that the allowable stresses equal or exceed 
the required stresses of the component under the action of 
the ASD load combinations.

Amplifi ed fi rst-order elastic analysis. An approximate 
second-order analysis method, such as the “B1-B2” method, 
based on applying load or displacement amplifi cation factors 
to the results from fi rst-order elastic analysis.

ASD (allowable strength design). Method of proportion-
ing structural components such that the allowable strength 
equals or exceeds the required strength of the component 
under the action of the ASD load combinations.

Available strength. Design strength or allowable strength, 
as appropriate.

Chord. Straight line between centroidal axis work points at 
each end of a member, segment or element.

Comprehensive second-order analysis. Second-order analy-
sis that includes (1) P-Δ effects, (2) the effect of P-δ on 
P-Δ, and (3) P-δ amplifi cation of internal moments between 
member ends.

Design strength. Resistance factor multiplied by nominal 
strength, ϕRn.

DM. Direct analysis method.

Drift. Lateral defl ection of structure.

Element. Portion of a member length between nodes in an 
analysis model.

ELM. Effective length analysis method.

FLB. Flange local buckling.

FOM. First-order analysis method.

In-plane. Relating to the plane of bending in a beam or 
beam-column.

Limit state. Condition in which a structure or component be-
comes unfi t for service and is judged either to be no longer 
useful for its intended function (serviceability limit) or to 
have reached its ultimate load-carrying capacity (strength 
limit state).

LRFD (load and resistance factor design). Method of 
proportioning structural components such that the design 
strength equals or exceeds the required strength of the com-
ponent under the action of the LRFD load combinations.

LTB. Lateral-torsional buckling.

Member. Column or beam with an analysis length from 
foundation to rafter (column) or on-slope dimension from 
column to column (beam), unless otherwise noted.

Modular frame. Multi-span rigid frame, usually having mo-
ment resisting exterior columns and interior columns carry-
ing gravity only.

Node. Location at which rotations and/or displacements are 
calculated in an analysis model.

Nominal strength. Strength of a structure or component 
(without resistance factor or safety factor applied) to resist 
load effects.

Out-of-plane. Relating to the direction perpendicular to the 
plane of bending in a beam or beam-column.

Prismatic member. A member whose geometry and section 
properties are constant along its length.

Required strength. Forces, stresses and deformations acting 
on the structural component, determined by either structural 
analysis, for the LRFD or ASD load combinations, or as 
specifi ed by the AISC Specifi cation.

Required stress. Stresses and deformations acting on the 
structural component, determined by either structural analy-
sis, for the LRFD or ASD load combinations, or as specifi ed 
by the AISC Specifi cation.

Resistance factor, ϕ. Factor that accounts for unavoidable 
deviations of the nominal strength from the actual strength 
and for the manner and consequences of failure.

Safety factor, Ω. Factor that accounts for deviations of the 
actual strength from the nominal strength, deviations of the 
actual load from the nominal load, uncertainties in the analy-
sis that transforms the load into a load effect, and for the 
manner and consequences of failure.

Second-order analysis. Structural analysis in which the equi-
librium conditions are formulated on the deformed structure; 
i.e., an analysis in which second-order effects (both P-δ and 
P-Δ, unless specifi ed otherwise) are included.
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Second-order effect. Effect of loads acting on the deformed 
confi guration of a structure; includes P-δ effect and P-Δ 
effect.

Segment. Portion of a column or beam length considered for 
convenience in design, analysis or manufacturing.

Strength load combination. Load combination used to de-
sign the member or frame against structural limit states.

TFY. Tension fl ange yielding.

Web-tapered member. A member with fl anges that are not 
parallel within some portion of its length due to tapering of 
the web.
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Revisions and Errata List 
AISC Steel Design Guide 25, 1st printing (Printed Copy) 
July 27, 2018 
 
The following list represents corrections made to the first printing (dated 2011) of AISC Design Guide 25, 
Frame Design Using Web-Tapered Members.  

 
Page(s)  Item  
  
59 In Figure 5-5, revise caption from AASHTO (2007) to AASHTO (2010). 
 
199 Add reference: 
 AASHTO (2010), LRFD Bridge Design Specifications, 5th Ed., American Association of 

State Highway and Transportation Officials, Washington, DC. 
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